KUSK Dataset â Kyoto University Smart Kitchen Dataset- æ¦è¦ Kyoto University Smart Kitchen dataset (KUSK dataset) ã¯ãããã³ã§ã®äººéã®æ´»åã観測ãããã¼ã¿ã»ããã§ãï¼ æ¬ããã¸ã§ã¯ãã¯èª¿çæ¯æ´ãé¡æã¨ãã¦ï¼ITãã¯ããã¸ã¼ã«ä¸æ £ããªã¦ã¼ã¶ã«ãå©ç¨å¯è½ãªã¤ã³ã¿ã¼ãã§ã¤ã¹ã®éçºãç®æãã¦ãã¾ãï¼ ãã®ãããªã·ã¹ãã ãå®ç¾ããããã«ã¯ï¼ã·ã¹ãã ã¯ã¦ã¼ã¶ã®æ¯ãèããååçã«è¦³æ¸¬ãï¼æå³ãäºæ¸¬ãï¼ããã¦ï¼ã¿ã¤ã ãªã¼ã§ï¼ãã¤ï¼é©åãªæ¯æ´ãæä¾ããå¿ è¦ãããã¾ãï¼ ãã®ãããªæ¯æ´ã®å®ç¾ããããï¼æ¬ãã¼ã¿ãã¼ã¹ã§ã¯ITã®ç¥èãå¿ è¦ãªã¦ã§ã¢ã©ãã«ã»ã³ãµã§ã¯ãªãï¼ç°å¢åãè¾¼ã¿åã®ã»ã³ãµãå©ç¨ãã¦ãã¾ãï¼ æ¬ãã¼ã¿ãã¼ã¹ã¯ç 究ç®çã«éãèªç±ã«å©ç¨å¯è½ã§ããï¼è«æçã§å©ç¨ããå ´åã«ã¯åèæç®ã¸ã®å¼ç¨ãå¿ è¦
1. Why don't you create new Spark.jl? 2015å¹´7æ11æ¥ JuliaTokyo#4 @sfchaos 1 2. èªå·±ç´¹ä» â twitterIDï¼ @sfchaos â ãã¼ã¯ã¼ãï¼ ãã¼ã¿ãã¤ãã³ã°ï¼æ©æ¢°å¦ç¿ï¼ãªã³ããã¸ã¼ï¼ Rï¼Pythonï¼Perlï¼C++ï¼Julia â ä»æ¥ã¯ãã®è¨èãè¨ãããã«ãã£ã¦æ¥ã¾ããï¼ âWhy don't you create Spark.jl?â 2
The paper, X-Sample Contrastive Loss: Improving Contrastive Learning with Sample Similarity Graphs, with Yann LeCun as the last author, is about similarity signals between samples, typically images. The point is to learn good representations (embeddings) by contrasting similar and dissimilar images. Today the implied probability of Kamala Harris being elected as the president of the United States
Our Indiegogo campaign turned out to be a (partial) success, so we deliver as promised: a comparison of Vowpal Wabbit, Liblinear/SBM and StreamSVM on the webspam dataset. Refer to the Comparing large-scale linear learners for motivation and references. Just to recap: the Liblinear/SBM and StreamSVM papers deal with linear learners able to handle data which doesnât fit into memory. Among other thin
æ±èããä¸é©åãªä¼è¨å¦çã®çºè¦ã§ãã¨ãï¼ææã®æ±ºç®ãçºè¡¨ã§ããªãç°ä¾ã®äºæ ã¨ãªã£ã¦ããåé¡ã§ãç°ä¸ä¹ é社é·ãä¼ç¤¾ã®å¹¹é¨ã«å¯¾ããè²»ç¨ã®è¨ä¸ãå éããã¦å©çã®ããä¸ããä¿ã趣æ¨ã®ã¡ã¼ã«ãéã£ã¦ãããã¨ãé¢ä¿è ã¸ã®åæã§åããã¾ããããã®åé¡ã調æ»ãã¦ãã第ä¸è å§å¡ä¼ã¯çµå¶ãããã®ä¸é©åãªä¼è¨å¦çã¸ã®é¢ä¸ã示ãã¨ä½ç½®ã¥ãã¦ããã¨è¦ãããæ±èã¯çµå¶é£ã®è²¬ä»»ã«ã¤ãã¦å³ããå¤æãè¿«ããããã§ãã é¢ä¿è ã«ããã¾ãã¨ã第ä¸è å§å¡ä¼ã«ããããã¾ã§ã®èª¿æ»ã§ãç°ä¸ç¤¾é·ã¯ãã¤ã³ãã©å·¥äºã®äºæ¥ãªã©ã§ãä¼ç¤¾å¹¹é¨ã«å¯¾ããè²»ç¨ã®è¨ä¸ã次ã®å¹´åº¦ã«å éããã¦ãå©çã®ããä¸ããä¿ã趣æ¨ã®ã¡ã¼ã«ãéã£ã¦ãããã¨ãåããã¾ããã ã¾ããä½ã æ¨å夫å¯ä¼é·ã¯ã社é·ãåãã¦ããå½æãæ¯æãéãããå¹¹é¨ä¼è°ã®å ´ã§ãæ¥ç¸¾ç®æ¨ã®éæãå¼·ãæ示ããçºè¨ãç¹°ãè¿ãã¦ãããã¨ãåããã¾ããã 第ä¸è å§å¡ä¼ã«ããèãåãã«å¯¾ãã¦ãç°ä¸ç¤¾é·ã¨ä½ã æ¨å¯
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}