The ITP algorithm is designed to select a small set of transformation to apply to an image classification dataset, to maximize the gain in accuracy This code is a reimplementation of the one used for the following paper: Transformation Pursuit for Image Classification Mattis Paulin, Jerome Revaud, Zaid Harchaoui, Florent Perronnin and Cordelia Schmid, CVPR 2014. Dependencies To make this code work
Ming-Ming Cheng1      Ziming Zhang2    Wen-Yan Lin3      Philip Torr1 1The University of Oxford    2Boston University    3Brookes Vision Group Abstract Training a generic objectness measure to produce a small set of candidate object windows, has been shown to speed up the classical sliding window object detection paradigm. We observe that generic objects with well-defined closed b
Ingressã¨ã¼ã¸ã§ã³ããã¨ã¸ããã§éå¬ãããå ¬å¼ã¤ãã³ãã§é®æããã2015.02.23 16:15 æ¦è è¯å¤ª ãã¡ã¨ã¼ã¸ã§ã³ãã¨ãã¦ãæ²ããåºæ¥äºã§ã...ã 2015å¹´2æ21æ¥ãã¨ã¸ããã®ã¢ã¬ã¯ãµã³ããªã¢ã§éå¬ãããIngressã®å ¬å¼ã¤ãã³ãï½¢XM Anomaly Satellite: Alexandria, EGï½£ã«ããã¦ã14人ã®Ingressã¨ã¼ã¸ã§ã³ããã¨ã¸ããå½å±ã«ææãããã¨ããäºä»¶ãèµ·ããããã§ãã 詳細ã¯ä¸æã§ãããIngressã¤ãã³ãã®éå¬ãã¨ã¸ããå½å±ãææ¡ãã¦ããªãã£ãå¯è½æ§ãé«ãããã§ããä¸è¬çã«ãã¤ãã³ãå®æ½è¨±å¯ãåããã¨ãããã¨ã§ä½è¨ãªã³ã¹ããæãã£ãã許å¯ãåããªãå¯è½æ§ãããã許å¯ãåã代ããã«Anomalyã¤ãã³ãã¯åå ããé½å¸ã®å ¬å ±ã¨ãªã¢ã§è¡ããããã¨ãããããã§ããããã¯å°åå½å±ã«ã¨ã£ã¦ã¯ããã®éã¾ãã許å¯ããã¦ãã¦æ³çã«åé¡ãªãå ´åï¼ã¾
ã¡ã³ããã³ã¹
ãç¥ãã
é害
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}