ããã³ãã¨ã³ãã®ãã©ãã¤ã ãåèã«ããã¯ã¨ã³ãéçºãåèãã / TypeScript ã«ãã GraphQL ããã¯ã¨ã³ãéçº

ããã³ãã¨ã³ãã®ãã©ãã¤ã ãåèã«ããã¯ã¨ã³ãéçºãåèãã / TypeScript ã«ãã GraphQL ããã¯ã¨ã³ãéçº
The document describes various probability distributions that can arise from combining Bernoulli random variables. It shows how a binomial distribution emerges from summing Bernoulli random variables, and how Poisson, normal, chi-squared, exponential, gamma, and inverse gamma distributions can approximate the binomial as the number of Bernoulli trials increases. Code examples in R are provided to
å¤é å¼å帰ããã¸ã¹ãã£ãã¯å帰ãªã©ãæè¿ã§ã¯ãã¼ã¿ãã¤ãã³ã°ãæ©æ¢°å¦ç¿ãªã©ã§ãããæ®éã®ææ³ã¨ãã¦ä½¿ããã微忹ç¨å¼ã«ã¤ãã¦ãçæ ç³»ã¢ãã«ã®ã·ãã¥ã¬ã¼ã·ã§ã³ãéãã¦ç´è¦³çã«çè§£ããããã®å ¥éæ¸ãçç©ã®çºçã¢ãã«ãã¯ã¸ã©ã®åéã¢ãã«ãªã©ã®å®ä¾ã«ã¤ãã¦ãMathematicaã«ããã·ãã¥ã¬ã¼ã·ã§ã³ãéãã¦çè§£ãä¿ãã¾ãããªãæ¬æ¸ã¯Ebookã®ã¿ã®è²©å£²ã¨ãªãã¾ãã æ¬æ¸ã®ãµã³ãã«ï¼PDFï¼ ãã¦ã³ãã¼ã ã¾ããã 第1ç« ã¯ããã«ï¼å¾®åæ¹ç¨å¼ã¨ã¯ 1.1 叏微忹ç¨å¼ã¨ç¸å³ 1.2 微忹ç¨å¼ã®æ°å¤è§£æ³ 第2ç« åºç¤ç·¨ï¼çç©ã¢ãã«ã§çè§£ãã微忹ç¨å¼ 2.1 ãã¸ã¹ãã£ãã¯ã¢ãã« 2.1.1 ãã¸ã¹ãã£ãã¯ã¢ãã«ãå½¢æããç¾ããæ²ç· 2.1.2 宿§çãªè§£ã®æãæ¹ 2.2 2種çç©ã®ç«¶åã¢ãã« 2.2.1 平衡ç¹ã®è§£æ 2.2.2 è§£è»è·¡ 2.2.3 ãã«ã¯ã©ã¤ã³ã«ããè§£æ 2.3 ãã°ãã¯çµ¶æ»
髿 ¡ã§å¾®åãåå¼·ãããã®ã®ãããªãã ãããããªããã©ãã è¨ç®æ¹æ³ã ãè¦ãããã¨ããå°ã£ãã¬ãã«ã«çã¾ã£ã¦ãã人ã¯ï¼æ®å¿µãªããï¼å¤ãããã§ãã ã¾ãã¯ãå¾®åã£ã¦ä½ãªã®ãããå³å½¢ã§çè§£ãã¦æ¬²ããã¨æãã¾ããããã§åãå³å½¢ã§ãå¾®åã®é°å²æ°ãç¥ã£ã¦æ¬²ããã¨æãã¾ãã ãã®ããã®ææã®ä¸ã¤ã¨ãã¦ãææ¥ãªã©ã§ä½¿ãã¹ã使ãã¾ããã ãã®ï¼ããé ã«èªãã§ãåããã¦ãã£ã¦ãã ããã ãã®ããã°ã©ã ãåããã®ã«å¿ è¦ãªãã¡ã¤ã«å ¨ã¦ã¯ãLHAã§å§ç¸®ãããã¡ã¤ã«ã«ã¾ã¨ãã¦ããã¾ãã androidã®æ¹ã¯ããã®apkãã¡ã¤ã«ããã¦ã³ãã¼ããã¦ããã¦ãããã§ãã ããã°ã©ã ã«ã¤ãã¦å¾¡è³ªåãå¾¡è¦æããã°å ±åãªã©ãããã¾ããããåéï¼»ãããã®ç©çå¦è ï¼½æå¼ã¸ã¡ã¼ã«ãã ããããã¾ãã¯ãtwitterã«ã¦irobutsuã¾ã§ã¡ã³ã·ã§ã³ãã¦ãã ããã
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}