You signed in with another tab or window. Reload to refresh your session. You signed out in another tab or window. Reload to refresh your session. You switched accounts on another tab or window. Reload to refresh your session. Dismiss alert
Spring Bootã«ããAPIããã¯ã¨ã³ãæ§ç¯å®è·µã¬ã¤ã 第2ç ä½å人ãã®éçºè ããInfoQã®ããããã¯ãPractical Guide to Building an API Back End with Spring BootããããSpring Bootã使ã£ãREST APIæ§ç¯ã®åºç¤ãå¦ãã ããã®æ¬ã§ã¯ãåºçæã«æ°ãããªãªã¼ã¹ããããã¼ã¸ã§ã³ã§ãã Spring Boot 2 ã使ç¨ãã¦ãããããããSpring Boot3ãæè¿ãªãªã¼ã¹ãããéè¦ãªå¤...
2012å¹´ã®ç¾å¨ãå²ã¨æ©ãã§ããã®ã§ã¡ã¢ã£ã¦ããã 年度æ«ãããã«å調æ»ã®äºå®ãã»ã»ãªã®ã§æ«å®ã§ããã ã¾ãåæã¨ãã¦ãç¾è¡ã®Hadoopã®å®è¡ãã¬ã¼ã ã¯ã¼ã¯ã§ããMapReduceã¯ãå®è¡å¹çã¯æ±ºãã¦è¯ãã¯ãªãã§ãããã®è¾ºãå²ã¨è¾ãã ã¨ã¯ããã大è¦æ¨¡ä¸¦åå¦çãä¸è¬çã«è¡ãã¨ãã観ç¹ã§ã®å質ãåãåããèããå ´åãâçµæã¨ãã¦âé常ã«ãã©ã³ã¹ãã¨ãã¦ãããæ®åãã¦ããããã®ä¸ã§ããã®MapReduceã§ãããä»å¾ã®è¦éãã«ã¤ãã¦ã¯ãæ½®æµã¯ä»ã®ã¨ããäºã¤ã«å²ãã¦ããããè¦ãããã®ã§ããã®è¾ºã®ã¡ã¢ã â YARN ä¸ã¤ã®æ¹åæ§ã¯ãç¾å¨ã®Hadoop2.0ç³»ã§å®è£ ããã¦ããMapReduce2.0ãã¨ããããMapReduceã¨ã¯å¥ã®å®è¡åºç¤ãå©ç¨ããã¨ããæ¹åã§ãããããªãã¡BSPããMPIãå©ç¨ãããè¦ã¯ãä»ã¾ã§ã®ä¸¦åå¦çã®ææããã®ã¾ã¾å©ç¨ãã¾ããããã¨ããæµãã«è¿ãã MapReduce
第10åHadoopã½ã¼ã¹ã³ã¼ããªã¼ãã£ã³ã°ã§çºè¡¨ããè³æã§ãã 2012å¹´6æã«éå¬ãããHadoop Summit ã®åå ã¬ãã¼ãã§ãYARNãHBaseãHDFS HA ãªã©ã®ã»ãã·ã§ã³ãç´¹ä»ãã¦ãã¾ããRead less
Hadoopã¨Mahoutã«ãããããã°ãã¼ã¿ã§ãæ©æ¢°å¦ç¿ãè¡ããã¨ãã§ãã¾ããMahoutã§å®è£ ããã¦ããææ³ã¯ãå ¨ã¦åæ£å¦çã§ããã¢ã«ã´ãªãºã ã¨ãããã¨ã«ãªãã¾ããMahoutã§å®è£ ããã¦ããã¢ã«ã´ãªãºã ã¯ãããã«åæããã¦ãã¾ããè«æã¨ãã¦ãã2006å¹´ã«ãMap-Reduce for Machine Learning on Multicoreãã¨ãã¦ããã¤ãã®ã¢ã«ã´ãªãºã ãç´¹ä»ããã¦ãã¾ãã ããã§ä»åã¯ãï¼ä½çªç ããåããã¾ãããèªåã®ç解ã®ããã«ãï¼ãã®è«æã§ç´¹ä»ããã¦ããã¢ã«ã´ãªãºã ã¨ãã©ããã£ã¦åæ£å¦çããã®ããç°¡åã«ã¡ã¢ãã¦ããããã¨æãã¾ããè¨ç®ããã¹ãçµ±è¨éããsummation formï¼è¶³ãç®ã§è¡¨ç¾ã§ããå½¢ï¼ã«ãªã£ã¦ãããã©ããããéè¦ãªãã¤ã³ãã§ãããªã£ã¦ãªãå ´åã¯ãâãã¾ãâMapReduceã®å½¢ã«ãã©ãå¿ è¦ãããã¾ãã â»ä¾ã«ãã£ã¦ãééãããã£ãå ´åã¯éæ
æ å ±ã¨æè¡ã¯æªæ¥ãã©ãå¤ããã®ãââITãã¹ãã¼ãããã¤ã¹ããããããé»åå·¥ä½ãã¡ãã£ã¢ã®ã¢ã¼ããã¯ã㣠Googleå¤åã®Kazunori SatoãããGoogle+ã«ç°¡æ½ãªè§£èª¬ããã¹ããã¦ããã¦ãã¾ãã ãã¹ã1 BigQueryãä¸è¬å ¬éããã¾ããï¼æ°100å件ã®å ¨æ¤ç´¢ãæ°åç§ã§å®äºããè¶ ä¸¦åã¯ã¨ãªãµã¼ãã¹ã§ãMapReduceã¨ä¸¦ã³Googleã®æ ¹å¹¹ãæ¯ããèã®åæè¡ã§ãã Google BigQuery brings Big Data analytics to all businesses - Google Developers Blog ãã¹ã2 BigQueryãã解説ï¼BigQueryã¯Google社å ã§ã¯ãDremelãã¨å¼ã°ããè¶ ä¸¦åã¯ã¨ãªã¤ã³ãã©ãå©ç¨ããä¸è¬åããµã¼ãã¹ã§ããDremelã¯Sybase IQãOracle Exadataã¨åæ§ã®Columar DB
Please note that all new project news and releases have moved to https://cascading.wensel.net The Cascading Ecosystem is a collection of applications, languages, and APIs for developing data-intensive applications. At the ecosystem core is Cascading, a Java API for defining complex data flows and integrating those flows with back-end systems, and a query planner for mapping and executing logical f
Ilya Katsovæ°ã«ãããMapReduce Patterns, Algorithms, and Use Casesãã®ç¿»è¨³ http://highlyscalable.wordpress.com/2012/02/01/mapreduce-patterns/ (ä¸æ¸ãã«å ¥ãã¦æ¨æ²ããã¤ãããããªããå ¬éããã¦ãã¾ã£ã¦ããã®ã§ããã¨ã§ããããä¿®æ£ããã¨æãã¾ã) February 1, 2012 ãã®è¨äºã§ã¯ãWebãç§å¦è«æã§è¦ãããç°ãªããã¯ããã¯ã®ä½ç³»çãªè¦ç¹ãä¸ããããã«ãæ°ã ã®MapReduceãã¿ã¼ã³ã¨ã¢ã«ã´ãªãºã ãã¾ã¨ããã ããã¤ãã®å®ç¨çãªã±ã¼ã¹ã¹ã¿ãã£ãæä¾ãã¦ããã ãã¹ã¦ã®èª¬æã¨ã³ã¼ãã¹ããããã§ã¯ãMapperãReducerãCombinerãPartitionaerãã½ã¼ãã£ã³ã°ã«ããã¦Hadoopã®æ¨æºçãªMapReduceã¢ãã«ãå©ç¨ãã¾ãããã®ãã¬ã¼
This webpage was generated by the domain owner using Sedo Domain Parking. Disclaimer: Sedo maintains no relationship with third party advertisers. Reference to any specific service or trade mark is not controlled by Sedo nor does it constitute or imply its association, endorsement or recommendation.
Introduction to Parallel Programming and MapReduce Table of Contents Audience and Pre-Requisites This tutorial covers the basics of parallel programming and the MapReduce programming model. The pre-requisites are significant programming experience with a language such as C++ or Java, and data structures & algorithms. Serial vs. Parallel Programming In the early days of computing, programs were s
Documentation has moved Celery is now using Read the Docs to host the documentation for the development version, where the pages are automatically updated as new changes are made (YAY!) The new location for this page is: http://docs.celeryproject.org/en/master/index.html. If you wanted documentation for the latest stable version instead, please go to: http://docs.celeryproject.org/en/latest/index.
ã¡ãªã¿ã«ããã®åæã®ããã«å¿ è¦ã¨ãããMapReduceã®ã³ã¼ãã§ãããããã®ãµã¤ãºã¯ããã20ã¹ãããã ã¨ãããYahoo!ã®ãã¬ã¼ã³ãã¼ã¿ã¼ã§ãããã¨ãªãã¯ã»ãã«ãã·ã¥ãã¤ã©ã¼æ°ã«ããã¨ããã¨ãçµé¨ã®æµ ãã¨ã³ã¸ãã¢ã§ãã£ã¦ããMapReduceã«ããããã°ã©ãã³ã°ã¯å¯è½ã§ããã¨ãããã ã¾ããVISAã®ã¸ã§ã¼ã»ã«ãã³ã¬ã æ°ããããè²´éãªãã¼ã¿ãæä¾ããã¦ããã®ã§ä»¥ä¸ã«ç´¹ä»ãããå社ã§ã¯ã1æ¥ã«1åãã©ã³ã¶ã¯ã·ã§ã³ãçºçããããã2å¹´éã§700åå¼·ã®ãã©ã³ã¶ã¯ã·ã§ã³ãã°ãèç©ããããã®ãã¼ã¿éã¯36ãã©ãã¤ãã«è³ãã¨ãããããããã¹ã±ã¼ã«ã®ãã¼ã¿ããå¾æ¥ã®RDBãç¨ãã¦åæããã«ã¯ãç´1ã«æã®æéãå¿ è¦ã¨ããã¦ããããHadoopãç¨ãããã¨ã§13åã«ç縮ãããã¨ããã ããã¾ã§ã¯ãYahoo!ã«ããVISAã«ãããè¨å¤§ãªãã¼ã¿ãRDBã«æ¼ãè¾¼ãã»ãã«æ¹æ³ã¯ãªãããã®åæã«æ°åæ¥ãè¦ãã
Amazon Elastic MapReduceã使ã£ã¦ã¿ã 2009-04-03 (Fri) 3:06 Amazon EC2 é£æ¥ã®EC2ãã¿ã§ããæ¬æ¥ãAmazonããElastic MapReduceã¨ãããµã¼ãã¹ããªãªã¼ã¹ããã¾ããã大è¦æ¨¡ãã¼ã¿å¦çæè¡ãä¸æ°ã«æ°éã®æã«ä¸ãã¦ãããã¾ãã«é©å½çãªãµã¼ãã¹ã ã¨æãã¾ãã Amazon Elastic MapReduce Amazon ElasticMapReduce ç´¹ä»ãã㪠With Hadoop, Amazon Adds A Web-Scale Data Processing Engine To Its Cloud Computer by techcrunch.com Elastic MapReduceã¯ãGoogleã®åºç¤æè¡ã®ä¸ã¤ã§ããMapReduceãæéåä½èª²éã§å®è¡ã§ãããµã¼ãã¹ã§ããMapReduceã«ã¤ãã¦ã¯ä»¥
Disco is a lightweight, open-source framework for distributed computing based on the MapReduce paradigm. Disco is powerful and easy to use, thanks to Python. Disco distributes and replicates your data, and schedules your jobs efficiently. Disco even includes the tools you need to index billions of data points and query them in real-time. Disco was born in Nokia Research Center in 2008 to solve rea
What we want to do In this tutorial, I will describe the required steps for setting up a multi-node Hadoop cluster using the Hadoop Distributed File System (HDFS) on Ubuntu Linux. Hadoop is a framework written in Java for running applications on large clusters of commodity hardware and incorporates features similar to those of the Google File System and of MapReduce. HDFS is a highly fault-tolera
In this tutorial, I will describe how to write a simple MapReduce program for Hadoop in the Python programming language. Motivation Even though the Hadoop framework is written in Java, programs for Hadoop need not to be coded in Java but can also be developed in other languages like Python or C++ (the latter since version 0.14.1). However, the documentation and the most prominent Python example o
Kansai.pm ã«åå ãã¾ãããã¨ã¦ã楽ããã£ãã§ããèªåã "Hadoop Streaming 㧠MapReduce" ã¨ããé¡ç®ã§çºè¡¨ãã¾ãããåãæ¥ããè³æã以ä¸ã«å ¬éãã¾ãã http://bloghackers.net/~naoya/ppt/080530kansaipm.ppt MapReduce 㯠Google ã®ããã¯ã¨ã³ãã§åãã¦ããåæ£ä¸¦åãããå¦çã·ã¹ãã ã§ããGFS 㯠Google ã®åæ£ãã¡ã¤ã«ã·ã¹ãã ã§ããGoogle ã¦ã§ã¢ã®ã¯ãã¼ã³ã¨ãã¦ãªã¼ãã³ã½ã¼ã¹ã§éçºããã¦ããã®ã HadoopãHadoop 㯠Yahoo! Inc ã Facebook, Amazon.com ãªã©ã§ãå©ç¨ããã¦ããã¨ã®ãã¨ãHadoop 㯠Java ã§ãããHadoop Streaming ã使ãã¨ãJava 以å¤ã§ã MapReduce ã§ãã¾ãã 以ä¸ã®ã¨ã³ããªãå
"MapReduce" 㯠Google ã®ããã¯ã¨ã³ãã§å©ç¨ããã¦ãã並åè¨ç®ã·ã¹ãã ã§ããæ¤ç´¢ã¨ã³ã¸ã³ã®ã¤ã³ããã¯ã¹ä½æãã¯ããã¨ããã大è¦æ¨¡ãªå ¥åãã¼ã¿ã«å¯¾ãããããå¦çãæ³å®ãã¦ä½ãããã·ã¹ãã ã§ãã MapReduce ã®é¢ç½ãã¨ããã¯ãmap() 㨠reduce() ã¨ããäºã¤ã®é¢æ°ã®çµã¿åãããå®ç¾©ããã ãã§ã大è¦æ¨¡ãã¼ã¿ã«å¯¾ããæ§ã ãªè¨ç®åé¡ã解決ãããã¨ãã§ããç¹ã§ãã MapReduce ã®è¨ç®ã¢ãã« map() ã«ã¯ãã®è¨ç®åé¡ã®ãã¼ã¿ã¨ãã¦ã® key-value ãã¢ã次ã ã«æ¸¡ã£ã¦ãã¾ããmap() ã§ã¯ key-value å¤ã®ãã¢ãç°ãªãè¤æ°ã® key-value ãã¢ã«å¤æãã¾ããreduce() ã«ã¯ãmap() ã§ä½ã£ã key-value ãã¢ãåä¸ã® key ã§æãããã®ãé çªã«æ¸¡ã£ã¦ãã¾ãããã® key-values ãã¢ãä»»æã®å½¢å¼ã«å¤æãããã¨
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}