æ°å¦ã®è§£èª¬ã³ã©ã ã®ç®æ¬¡ã¸ é常ã«é£è§£ã§ãããã¨ã§æåãªãå¤å¤æ°ã»è¤ç´ é¢æ°è«ãï¼å¤å¤æ°è¤ç´ 解æï¼ã ãã®æ¦è¦ãã¤ããã§å ¥éããããã®PDFè³æãéããã ãå¤å¤æ°è¤ç´ é¢æ°è«ãã¨ããåéã¯ï¼è§£æå¦ã¨å¹¾ä½å¦ã®ä¸¡æ¹ããããã¦é«åº¦ã«çµã¿åãããé åã éåè«ã¸ã®å¿ç¨ãããã æ¥æ¬äººã®æ°å¦è ã岡ã»æ½ï¼ãããããï¼ããä½ãåºããã 岡æ½å çã¯ï¼ç 究ã«æ²¡é ãããã¾ãå¤äººã»å¥äººã ã£ãï¼ã¨ãããã¨ãããç¥ããã¦ããã ãå¤å¤æ°é¢æ°è«ãã¨ã¯ï¼ãæ£åé åã調ã¹ãçè«ãã§ãã 岡æ½ã®çè«ã¯ï¼ã«ã«ã¿ã³ã«ãã£ã¦ã層ã®ã³ãã¢ãã¸ã¼ãçè«ã«æ¹å¤ããã¦ä¸çã«æµå¸ãã 岡æ½ã®çè«ã®ä¸æ ¸ããªãã®ã¯ï¼ã岡ã®é£æ¥å®çã å¤å¤æ°ã®è¤ç´ å½æ°è«ãå¦ã¶ããã®æ°å¦çãªè§£èª¬ 岡æ½ã®ãµãããªäººæã«ã¤ã㦠ãã®çè«ã®çºå±ã¨ãã¦ãä½è¤ã®è¶ é¢æ°è«ãããããã³ã®åã®å®çããããï¼éåå ´ã®çè«ã«å½¹ç«ã£ã¦ãã ãå¤å¤æ°é¢æ°è«ãã¨ã¯ï¼ãæ£åé åã調ã¹ãçè«ãã§
ãã¤ã´ã£ããã»ã¹ãã´ã¡ãã¯ã¯ããã¼ã¿ãã¼ã¹ãé¢æåã使ã£ã¦å®å¼åãã¾ãããããã§åã¯ããé¢æåã£ã¦å½¹ã«ç«ã¤ãã ãªã¼ãã¨æã£ãããã§ãããæ¹ãã¦è¦æ¸¡ãã¦ã¿ãã°ããããããã ãé¢æåã ããã§ãããã å å®¹ï¼ ç¾¤ãä½ç¨ããéåããããã¯ç¾¤ã®è¡¨ç¾ ã¢ãã¤ããä½ç¨ããéåããããã¯å 群 åãä½ç¨ããéåãä¸è¬åå 群 å層ãã¤ã³ããã¯ã¹ä»ãåãå°æ¥å 群ãä½ç¨ããéåããããã¯ç¾¤ã®è¡¨ç¾ G = (G, e, ã») ã群ã®ã¨ããGãä½ç¨ããéåAãG-éåã¨å¼ã³ã¾ããä½ç¨ã¨ã¯ãα:AÃGâA ã¨ããååã§ãåä½å¾ α(a, e) = a ã¨çµåå¾ Î±(α(a, x), y) = α(a, xã»y) ãæç«ãããã®ã§ããå·¦å³ãå ¥ãæ¿ãã GÃAâA ãèããå ´åãããã¾ãããæ¬è³ªçãªéãã¯ããã¾ãããAããªãããã®æå³ã§å¹¾ä½çãªéåã®ã¨ãã¯ãG-éåãG-空éã¨ãå¼ã³ã¾ãã αãã«ãªã¼åãã¦ãα' = λ
PShåã¨colimit ä½ç¸ç©ºéXã«å¯¾ãã¦ãXä¸ã®å層Fã¨ã¯ãXã®ééåããéåã¸ã®åå (ã§ããã¤å¶éååã¨ãããã®ãå®ãããã¦ãããã®ã®)ã®ãã¨ã§ã(詳ããã¯å±¤ (æ°å¦) - Wikipediaçãåç §)ã ããã§ãã«å å«é¢ä¿ã§é åºãå ¥ãã¦ãããé åºéåã®å(ã¨è¡¨è¨)ã¨ã¿ãªãã¾ããããã¨Fã¯ã ãªãåå¤å½æã§ãã£ã¦ããã®å½æã対象ãå½æã®éã®èªç¶å¤æãå°ã¨ãããããªå½æåãå®ç¾©ã§ãã¾ãã (ä½è«ã§ãããã¯ç±³ç°ã®è£é¡ã§ãããªãã¿ã®åã§ããç±³ç°å½æã¯ã¨ããå½æã ã£ãã®ã§ãããã¯ä½ç¸ããå層ã¸ã®ååã¨ã¿ããã¨ãã§ãã¾ãã) ãããã¦ã§ããXã®ä¸ã®å層ã®åãã¨ããã¾ãã ããã«Xä¸ã®å層ã層ã§ããã¨ã¯ãXã®å ¨ã¦ã®ééåã«ã¤ãã¦ãæ¢ç´æ§æ¡ä»¶ã¨éæ¡ä»¶ã¨å¼ã°ãã2ã¤ã®æ¡ä»¶ãã¿ãããããªãã®ã®ãã¨ã§ãããããåã®è¨èã§æ¸ãã¨ã 対象ã¨å°ãã®equalizerã§ãã*1ã¨ããã¾ãã å層ã¯ãã ã®åå¤å½
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}