核力 歴史

核力

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/06/29 06:15 UTC 版)

歴史

核力は、1932年にジェームズ・チャドウィックによる中性子の発見によって原子核物理学が誕生して以来、核物理学の中核を担ってきた。核物理学の伝統的な目標は、原子核の性質を、二核子間の「裸の」相互作用、すなわち核子-核子力(NN力)の観点から理解することである。

中性子の発見から数ヶ月以内に、ヴェルナー・ハイゼンベルク[8][9][10]ドミトリー・イワネンコ[11]は原子核の陽子-中性子モデルを提案していた[12]。量子力学は当時全く明らかではなかったが、ハイゼンベルクは原子核内の陽子と中性子の記述に、量子力学を通してアプローチした。ハイゼンベルクの原子核における陽子と中性子の理論は、「原子核を量子力学的なシステムとして理解するための大きな一歩」であった[13]。ハイゼンベルクは、核子を結合する交換力の理論を初めて導入した。彼は陽子と中性子を同じ粒子の異なる量子状態、すなわち核子は核アイソスピン量子数の値によって区別されると考えた。

原子核の最も初期のモデルの 1 つは、1930 年代に開発された液滴模型である。原子核の性質として、核子1個あたりの平均結合エネルギーが、安定な原子核ではすべてほぼ同じであるというものがあり、これは液体の滴に似ている。液滴模型では、原子核を非圧縮性の流体の液滴として扱い、核子は液体中の分子のように振る舞う。このモデルはジョージ・ガモフによって最初に提案され、その後ニールス・ボーアヴェルナー・ハイゼンベルクカール・フリードリヒ・フォン・ヴァイツゼッカーによって発展した。この粗いモデルは、原子核のすべての性質を説明することはできなかったが、ほとんどの原子核が球形であることを説明できた。このモデルは、原子核の結合エネルギーについても良い予測を与えた。

1934年、湯川秀樹は核力の性質を説明する最も初期の試みを行った。彼の理論によれば、質量のあるボース粒子(中間子)が2つの核子間の相互作用を媒介する。量子色力学(QCD)、ひいては標準模型に照らし合わせると、中間子理論はもはや基本的なものとは認識されていない。しかし、中間子交換の概念(ハドロン素粒子として扱われる)は、定量的なNNポテンシャルのための最良の実用モデルであり続けている。湯川ポテンシャル(遮蔽クーロンポテンシャルとも呼ばれる)は次のようなポテンシャルである。

ここで、gはスケーリング定数、すなわちポテンシャルの振幅、μは湯川粒子の質量、rは粒子までの半径方向距離である。ポテンシャルは単調増加する、 つまり力は常に引力であることを意味する。定数は経験的に決定される。湯川ポテンシャルは粒子間の距離rにのみ依存するため、中心力をモデル化している。

イジドール・イザーク・ラービ率いるコロンビア大学のグループは、1930年代を通じて原子核の磁気モーメントを測定する磁気共鳴技術を開発した。これらの測定により、1939年に重陽子にも電気四極子モーメントがあることを発見するに至った[14][15]。重陽子のこの電気的性質は、ラービのグループによる測定を妨害していた。陽子と中性子からなる重陽子は最も単純な原子核系の一つである。この発見は、重陽子の物理的形状が対称的でないことを意味し、核子を結合する核力の性質について貴重な洞察をもたらした。特にこの結果は、核力が中心力ではなく、テンソル的な性質を持つことを示した[1]ハンス・ベーテは、重陽子の四極子モーメントの発見を、初期の核物理学における重要な出来事のひとつと位置づけた[14]

歴史的に見ても、核力を現象論的に記述する作業は手ごわいものであった。最初の半経験的な定量モデルは、1950年代半ばに登場した[1]、Woods-Saxonポテンシャル(1954年、en:Woods–Saxon potential)などである。1960年代と1970年代には、核力に関連する実験と理論に大きな進展がみられた。影響力のあるモデルの1つが、Reidポテンシャル(1968年)である[1]

ここで、、ポテンシャルの単位はMeVである。

また、核力の詳細を扱う実験テーマとして、例えば以下が挙げられる。

核力の電荷依存性、πNN結合定数の正確な値、改良された位相シフト解析、高精度NNデータ、高精度NNポテンシャル、中〜高エネルギーでのNN散乱、QCDから核力を導出する試みなど。


  1. ^ a b c d Reid, R. V. (1968). “Local phenomenological nucleon–nucleon potentials”. Annals of Physics 50 (3): 411–448. Bibcode1968AnPhy..50..411R. doi:10.1016/0003-4916(68)90126-7. 
  2. ^ Kenneth S. Krane (1988). Introductory Nuclear Physics. Wiley & Sons. ISBN 0-471-80553-X 
  3. ^ Binding Energy, Mass Defect, Furry Elephant physics educational site, retrieved 2012-07-01.
  4. ^ Chapter 4. NUCLEAR PROCESSES, THE STRONG FORCE, M. Ragheb, 1/30/2013, University of Illinois.
  5. ^ Povh, B.; Rith, K.; Scholz, C.; Zetsche, F. (2002). Particles and Nuclei: An Introduction to the Physical Concepts. Berlin: Springer-Verlag. pp. 73. ISBN 978-3-540-43823-6 
  6. ^ Stern, Dr. Swapnil Nikam (2009年2月11日). “Nuclear Binding Energy”. From Stargazers to Starships. NASA website. 2016年4月9日時点のオリジナルよりアーカイブ。2010年12月30日閲覧。
  7. ^ Griffiths, David, Introduction to Elementary Particles
  8. ^ Heisenberg, W. (1932). “Über den Bau der Atomkerne. I” (ドイツ語). Z. Phys. 77 (1–2): 1–11. Bibcode1932ZPhy...77....1H. doi:10.1007/BF01342433. 
  9. ^ Heisenberg, W. (1932). “Über den Bau der Atomkerne. II” (ドイツ語). Z. Phys. 78 (3–4): 156–164. Bibcode1932ZPhy...78..156H. doi:10.1007/BF01337585. 
  10. ^ Heisenberg, W. (1933). “Über den Bau der Atomkerne. III” (ドイツ語). Z. Phys. 80 (9–10): 587–596. Bibcode1933ZPhy...80..587H. doi:10.1007/BF01335696. 
  11. ^ Iwanenko, D. D., The neutron hypothesis, Nature 129 (1932) 798.
  12. ^ Miller A. I. Early Quantum Electrodynamics: A Sourcebook, Cambridge University Press, Cambridge, 1995, ISBN 0521568919, pp. 84–88.
  13. ^ Brown, L. M.; Rechenberg, H. (1996). The Origin of the Concept of Nuclear Forces. Bristol and Philadelphia: Institute of Physics Publishing. ISBN 0750303735. オリジナルの2023-12-30時点におけるアーカイブ。. https://web.archive.org/web/20231230135136/https://books.google.com/books?id=IJPTgDTOmgMC&q=heisenberg+proton+neutron+model&pg=PA33#v=snippet&q=heisenberg%20proton%20neutron%20model&f=false 2020年10月19日閲覧。 
  14. ^ a b John S. Rigden (1987). Rabi, Scientist and Citizen. New York: Basic Books, Inc.. pp. 99–114. ISBN 9780674004351. オリジナルのDecember 30, 2023時点におけるアーカイブ。. https://web.archive.org/web/20231230135203/https://books.google.com/books?id=Qgv9Xjv8_LYC&q=rabi+kellogg+zacharias+magnetic+moment+neutron&pg=PA106#v=snippet&q=rabi%20kellogg%20zacharias%20magnetic%20moment%20neutron&f=false 2015年5月9日閲覧。 
  15. ^ Kellogg, J. M.; Rabi, I. I.; Ramsey, N. F.; Zacharias, J. R. (1939). “An electrical quadrupole moment of the deuteron”. Physical Review 55 (3): 318–319. Bibcode1939PhRv...55..318K. doi:10.1103/physrev.55.318. オリジナルのMay 12, 2017時点におけるアーカイブ。. https://web.archive.org/web/20170512174358/https://journals.aps.org/pr/abstract/10.1103/PhysRev.55.318 2015年5月9日閲覧。. 
  16. ^ Wiringa, R. B.; Stoks, V. G. J.; Schiavilla, R. (1995). “Accurate nucleon–nucleon potential with charge-independence breaking”. Physical Review C 51 (1): 38–51. arXiv:nucl-th/9408016. Bibcode1995PhRvC..51...38W. doi:10.1103/PhysRevC.51.38. PMID 9970037. 





英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  
  •  核力のページへのリンク

辞書ショートカット

', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', ''];function getDictCodeItems(index) {return dictCodeList[index];}

すべての辞書の索引

「核力」の関連用語


2
η中間子 デジタル大辞泉
36% |||||

3
μ中間子 デジタル大辞泉
36% |||||

4
π中間子 デジタル大辞泉
36% |||||

5
短距離力 デジタル大辞泉
36% |||||

6
B中間子 デジタル大辞泉
34% |||||

7
K中間子 デジタル大辞泉
34% |||||

8
強い相互作用 デジタル大辞泉
34% |||||



核力のお隣キーワード
検索ランキング
';function getSideRankTable() {return sideRankTable;}

   

英語⇒日本語
日本語⇒英語
   



核力のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの核力 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS