正四十六角形とは? わかりやすく解説

正四十六角形

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/08/15 07:49 UTC 版)

四十六角形」の記事における「正四十六角形」の解説

正四十六角形においては中心角外角は7.826…°で、内角は172.173…°となる。一辺長さが a の正四十六角形の面積 S は S = 46 4 a 2 cot ⁡ π 46 ≃ 168.12405 a 2 {\displaystyle S={\frac {46}{4}}a^{2}\cot {\frac {\pi }{46}}\simeq 168.12405a^{2}} cos ⁡ ( 2 π / 46 ) {\displaystyle \cos(2\pi /46)} の値は、11方程式を解くことにより冪根表現される。 z 11 = 1 {\displaystyle z^{11}=1} の複素数解の一つ e 2 π 11 i {\displaystyle e^{{\frac {2\pi }{11}}i}} をσとおいて、10多項式にσを代入した値の11乗根10個( λ 1 , λ 2 , λ 3 , λ 4 , λ 5 , λ 6 , λ 7 , λ 8 , λ 9 , λ 10 {\displaystyle \lambda _{1},\lambda _{2},\lambda _{3},\lambda _{4},\lambda _{5},\lambda _{6},\lambda _{7},\lambda _{8},\lambda _{9},\lambda _{10}} )用いて表されるcos ⁡ 2 π 46 = cos ⁡ π 23 = cos ⁡ ( π − 22 π 23 ) = − cos22 π 23 = − λ 1 σ 2 + λ 2 σ 4 + λ 3 σ 6 + λ 4 σ 8 + λ 5 σ 10 + λ 6 σ + λ 7 σ 3 + λ 8 σ 5 + λ 9 σ 7 + λ 10 σ 9 − 1 22 {\displaystyle {\begin{aligned}\cos {\frac {2\pi }{46}}=&\cos {\frac {\pi }{23}}=\cos \left(\pi -{\frac {22\pi }{23}}\right)=-\cos {\frac {22\pi }{23}}\\=&-{\frac {\lambda _{1}\sigma ^{2}+\lambda _{2}\sigma ^{4}+\lambda _{3}\sigma ^{6}+\lambda _{4}\sigma ^{8}+\lambda _{5}\sigma ^{10}+\lambda _{6}\sigma +\lambda _{7}\sigma ^{3}+\lambda _{8}\sigma ^{5}+\lambda _{9}\sigma ^{7}+\lambda _{10}\sigma ^{9}-1}{22}}\end{aligned}}} λ 1 = 23 ( 384812 + 188298 σ − 625515 σ 2 − 78859 σ 3 + 740707 σ 4 + 84370 σ 5 + 834405 σ 6 + 98208 σ 7 + 361900 σ 8 − 56177 σ 9 ) 11 {\displaystyle \lambda _{1}={\sqrt[{11}]{23(384812+188298\sigma -625515\sigma ^{2}-78859\sigma ^{3}+740707\sigma ^{4}+84370\sigma ^{5}+834405\sigma ^{6}+98208\sigma ^{7}+361900\sigma ^{8}-56177\sigma ^{9})}}} λ 2 = 23 ( 384812 + 188298 σ 2 − 625515 σ 4 − 78859 σ 6 + 740707 σ 8 + 84370 σ 10 + 834405 σ + 98208 σ 3 + 361900 σ 5 − 56177 σ 7 ) 11 {\displaystyle \lambda _{2}={\sqrt[{11}]{23(384812+188298\sigma ^{2}-625515\sigma ^{4}-78859\sigma ^{6}+740707\sigma ^{8}+84370\sigma ^{10}+834405\sigma +98208\sigma ^{3}+361900\sigma ^{5}-56177\sigma ^{7})}}} λ 3 = 23 ( 384812 + 188298 σ 3 − 625515 σ 6 − 78859 σ 9 + 740707 σ + 84370 σ 4 + 834405 σ 7 + 98208 σ 10 + 361900 σ 2 − 56177 σ 5 ) 11 {\displaystyle \lambda _{3}={\sqrt[{11}]{23(384812+188298\sigma ^{3}-625515\sigma ^{6}-78859\sigma ^{9}+740707\sigma +84370\sigma ^{4}+834405\sigma ^{7}+98208\sigma ^{10}+361900\sigma ^{2}-56177\sigma ^{5})}}} λ 4 = 23 ( 384812 + 188298 σ 4 − 625515 σ 8 − 78859 σ + 740707 σ 5 + 84370 σ 9 + 834405 σ 2 + 98208 σ 6 + 361900 σ 10 − 56177 σ 3 ) 11 {\displaystyle \lambda _{4}={\sqrt[{11}]{23(384812+188298\sigma ^{4}-625515\sigma ^{8}-78859\sigma +740707\sigma ^{5}+84370\sigma ^{9}+834405\sigma ^{2}+98208\sigma ^{6}+361900\sigma ^{10}-56177\sigma ^{3})}}} λ 5 = 23 ( 384812 + 188298 σ 5 − 625515 σ 10 − 78859 σ 4 + 740707 σ 9 + 84370 σ 3 + 834405 σ 8 + 98208 σ 2 + 361900 σ 7 − 56177 σ ) 11 {\displaystyle \lambda _{5}={\sqrt[{11}]{23(384812+188298\sigma ^{5}-625515\sigma ^{10}-78859\sigma ^{4}+740707\sigma ^{9}+84370\sigma ^{3}+834405\sigma ^{8}+98208\sigma ^{2}+361900\sigma ^{7}-56177\sigma )}}} λ 6 = 23 ( 384812 + 188298 σ 6 − 625515 σ − 78859 σ 7 + 740707 σ 2 + 84370 σ 8 + 834405 σ 3 + 98208 σ 9 + 361900 σ 4 − 56177 σ 10 ) 11 {\displaystyle \lambda _{6}={\sqrt[{11}]{23(384812+188298\sigma ^{6}-625515\sigma -78859\sigma ^{7}+740707\sigma ^{2}+84370\sigma ^{8}+834405\sigma ^{3}+98208\sigma ^{9}+361900\sigma ^{4}-56177\sigma ^{10})}}} λ 7 = 23 ( 384812 + 188298 σ 7 − 625515 σ 3 − 78859 σ 10 + 740707 σ 6 + 84370 σ 2 + 834405 σ 9 + 98208 σ 5 + 361900 σ − 56177 σ 8 ) 11 {\displaystyle \lambda _{7}={\sqrt[{11}]{23(384812+188298\sigma ^{7}-625515\sigma ^{3}-78859\sigma ^{10}+740707\sigma ^{6}+84370\sigma ^{2}+834405\sigma ^{9}+98208\sigma ^{5}+361900\sigma -56177\sigma ^{8})}}} λ 8 = 23 ( 384812 + 188298 σ 8 − 625515 σ 5 − 78859 σ 2 + 740707 σ 10 + 84370 σ 7 + 834405 σ 4 + 98208 σ + 361900 σ 9 − 56177 σ 6 ) 11 {\displaystyle \lambda _{8}={\sqrt[{11}]{23(384812+188298\sigma ^{8}-625515\sigma ^{5}-78859\sigma ^{2}+740707\sigma ^{10}+84370\sigma ^{7}+834405\sigma ^{4}+98208\sigma +361900\sigma ^{9}-56177\sigma ^{6})}}} λ 9 = 23 ( 384812 + 188298 σ 9 − 625515 σ 7 − 78859 σ 5 + 740707 σ 3 + 84370 σ + 834405 σ 10 + 98208 σ 8 + 361900 σ 6 − 56177 σ 4 ) 11 {\displaystyle \lambda _{9}={\sqrt[{11}]{23(384812+188298\sigma ^{9}-625515\sigma ^{7}-78859\sigma ^{5}+740707\sigma ^{3}+84370\sigma +834405\sigma ^{10}+98208\sigma ^{8}+361900\sigma ^{6}-56177\sigma ^{4})}}} λ 10 = 23 ( 384812 + 188298 σ 10 − 625515 σ 9 − 78859 σ 8 + 740707 σ 7 + 84370 σ 6 + 834405 σ 5 + 98208 σ 4 + 361900 σ 3 − 56177 σ 2 ) 11 {\displaystyle \lambda _{10}={\sqrt[{11}]{23(384812+188298\sigma ^{10}-625515\sigma ^{9}-78859\sigma ^{8}+740707\sigma ^{7}+84370\sigma ^{6}+834405\sigma ^{5}+98208\sigma ^{4}+361900\sigma ^{3}-56177\sigma ^{2})}}}

※この「正四十六角形」の解説は、「四十六角形」の解説の一部です。
「正四十六角形」を含む「四十六角形」の記事については、「四十六角形」の概要を参照ください。

ウィキペディア小見出し辞書の「正四十六角形」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

','','','','','','','','','','','','','','','','','',''];function getDictCodeItems(a){return dictCodeList[a]};

すべての辞書の索引

「正四十六角形」の関連用語


正四十六角形のお隣キーワード

正四十二角形

正四十二角形の作図

正四十五角形

正四十五角形の作図

正四十八角形

正四十八角形の作図

正四十六角形

正四十六角形の作図

正四十四角形

正四十四角形の作図

正四十角形

正四十角形の作図

正四百角形

検索ランキング
';function getSideRankTable(){return sideRankTable};

   

英語⇒日本語
日本語⇒英語
   



正四十六角形のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaの四十六角形 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2025 GRAS Group, Inc.RSS