極限点の種類
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2019/10/14 01:23 UTC 版)
x を含む任意の開集合が無限に多くの S の点を含むとき、集積点 x を特に S の ω-集積点 (ω-accumulation point) という。 x を含む任意の開集合が非可算無限個の S の点を含むとき、集積点 x を特に S の凝集点 (condensation point) という。 x を含む任意の開集合 U について |U ∩ S| = |S| が満たされるとき、集積点 x を特に S の完全集積点 (complete accumulation point) という。 X の点 x が点列 (xn)n∈N の密集点 (cluster point) であるとは、x の任意の近傍 V に対し xn ∈ V なる自然数nが無限に存在するときにいう。空間が列収束ならば、これは点列 (xn)n∈N の部分列で x を極限とするものがあることと同値である。 ネットの概念は点列の概念を一般化したもので、ネットに関する密集点の概念は凝集点と ω-集積点の概念をともに一般化するものになっている。集積および集積点の概念は同じようにフィルターに対しても定義することができる。 点列の密集点全体の成す集合は、しばしば極限集合と呼ばれる。
※この「極限点の種類」の解説は、「集積点」の解説の一部です。
「極限点の種類」を含む「集積点」の記事については、「集積点」の概要を参照ください。
- 極限点の種類のページへのリンク