単純加群とは? わかりやすく解説

単純加群

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2016/03/25 09:36 UTC 版)

R 上の左加群 S ≠ {0} が非自明な部分 R-加群をもたないとき、S単純加群(たんじゅんかぐん、: simple module)または既約加群(きやくかぐん、: irreducible module)という。これは、0 でない任意の xS について S = Rx となることと同値である。 これは左 R-加群の R-Mod において、すべてのゼロでない準同型写像 SM単射である、あるいはすべてのゼロでない準同型写像 MS全射であることとしても特徴づけられる[1]。 右加群に対しても同様に定義される。

  • 有限 Z-加群はアーベル群と同じなので、 単純 Z-加群とは {0} でない真の部分群をもたないアーベル群、つまり位数素数巡回群である。
  • 係数環 R が特に R = k のとき k-加群とは線型空間なので、単純 k-加群とは 1 次元線型空間 k のことである。
  • (直前の例を一般化して)係数環 R が特に体 k 上の全行列環 R = Matn(k)のとき 単純 R-加群は kn である。ただし環の作用は行列の乗法で定める。
  • 複素数体 C 上の対称群 Sn に関する群環 CSn の単純 CSn-加群の同型類シュペヒト加群英語版で与えられる。

性質

  • R極大左イデアル L に対し、R/L は単純左加群である。逆に,すべての単純加群はこのようにして得られる[1]
  • (直前の性質より)単純加群は常に存在する[1]
  • 単純加群は直既約加群である。
  • 単純加群は巡回加群である。

脚注

  1. ^ a b c Anderson & Fuller 1992, p. 116.

参考文献

関連項目


単純加群

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/11/12 07:37 UTC 版)

環上の加群」の記事における「単純加群」の解説

単純加群 S とは {0} と S 自身しか部分加群持たないような {0} でない加群のことである。単純加群はしばし既約加群とも呼ばれる

※この「単純加群」の解説は、「環上の加群」の解説の一部です。
「単純加群」を含む「環上の加群」の記事については、「環上の加群」の概要を参照ください。

ウィキペディア小見出し辞書の「単純加群」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

','','','','','','','','','','','','','','','','','',''];function getDictCodeItems(a){return dictCodeList[a]};

すべての辞書の索引

「単純加群」の関連用語











単純加群のお隣キーワード
検索ランキング
';function getSideRankTable(){return sideRankTable};

   

英語⇒日本語
日本語⇒英語
   



単純加群のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの単純加群 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaの環上の加群 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2025 GRAS Group, Inc.RSS