æè²ã¨ãã¯ããã¸ã¼ãæãåããããEdTechãã®é åã§ãæè²ã®ã²ã¼ããã£ã±ã¼ã·ã§ã³ã¨ä¸¦ãã§ãâthe next big thingâã¨è¨ããã¦ããã®ããã¢ãããã£ã´ã©ã¼ãã³ã°ãã§ããã
è¿å¹´ãå¤é¡ã®è³éãã¢ãããã£ã´ã©ã¼ãã³ã°é¢é£ã®ã¹ã¿ã¼ãã¢ããã¸ã®æè³ãã大å¦ç 究費ã«å ã¦ãããããã«ãªãããããªã注ç®ãéãã¦ããã
ãããããã¢ãããã£ã´ã©ã¼ãã³ã°ã¨ã¯ãã£ããä½ãªã®ããã¾ãã¯ä¸è¬çãªææ¥é¢¨æ¯ãæãæãã¦ã»ãããã³ã³ãã¥ã¼ã¿ã¼ç»å ´ä»¥åã§ããå çãçå¾ä¸äººã²ã¨ãã®å¦åãå¯è½ãªéãææ¡ããããã«è¦åã£ã声ããã課é¡æä¾ãè¡ããã¨ã¯ä¸å¯è½ã§ã¯ãªãã£ããã¾ããäºåå¦åãã¹ããªã©ãè¡ãå¦åå¥ã«çå¾ãã¯ã©ã¹åãããã¯ã©ã¹ãã¨ã«æé©ãªææãæä¾ãããæå°æ¹æ³ãå¤ããã¨ãã£ããã¨ãè¡ããã¦ããã
ãã®ãï½ã«æé©ãªï½ãæä¾ãããã¨ããè¡çºãã®ãã®ãã¢ãããã£ã´ã§ããããããã£ãæå³ã§ã¯ãã¢ãããã£ã´ã©ã¼ãã³ã°ã¯ã³ã³ãã¥ã¼ã¿ã¼ç»å ´ä»¥åããå½ããåã®ããã«åå¨ããã
ã ããããã¯ã¯ã©ã¹åä½ããããã¯åä½ãªã©ãé常ã«ç²åº¦ã®ç²ããã®ã§ãããå¤ãã®æè²è ãæ±ãçæ³ã¨ã¯ã»ã©é ããã®ã§ãã£ãããã®ç¶æ³ãä¸å¤ãããã®ããã³ã³ãã¥ã¼ã¿ã¼ã®èªçãã¤ã³ã¿ã¼ãããã®ççºçæ®åãããã¦è¿å¹´ããºã¯ã¼ãã¨ãã¦é »ç¹ã«è³ã«ããããã«ãªã£ããããã°ãã¼ã¿ãã§ããã
ã¢ãããã£ã´ã©ã¼ãã³ã°ã¯ããå人å人ã«æé©åãããå¦ç¿å 容ã®èªåæä¾ãã¨ããæè²è ã®çæ³ãéæããããã«ãä¸çä¸ã®å¤©æãã¡ãããã°ãã¼ã¿çææ³ãç¨ããªããæ¥ã ç¥æµãçµã£ã¦ãããæè²æ¥çã«ãããæãããããªé åã®ã²ã¨ã¤ã§ããã
ã¢ãããã£ã´ã©ã¼ãã³ã°ã¯ãæè²Ãããã°ãã¼ã¿ãã®ã²ã¨ã¤ã®éè¦ãªã¢ããªã±ã¼ã·ã§ã³ã¨ãã¦ã¨ããããã¦ãããããã°ãã¼ã¿ã¯ããã¾ãã¾ãªç¨®é¡ã®å¤§è¦æ¨¡ãã¼ã¿ãéç©ãåæããããããéè¦ãªæå³åããæ½åºããããçµå¶å¤æã«å¯ä¸ãããã§ãããããä¸çä¸ã®ä¼æ¥ã»æ¿åºã»ç 究æ©é¢ã«ãã£ã¦æ³¨ç®ããã¦ããã身è¿ãªæ´»ç¨ä¾ã§è¨ãã°ãã½ã¼ã·ã£ã«ã²ã¼ã ã§ãã£ãããGoogleã®æ¤ç´¢é£åååºåï¼æ¤ç´¢å 容ã«åããã¦è¡¨ç¤ºããåºåããã¤ãããã¯ã«å¤æ´ããã®è³ªã¯ãã®ä»å¤æ°ãè¤åçã«ã¢ã«ã´ãªãºã ã«å ¥ãè¾¼ããã¨ã«ãã£ã¦åä¸ãç¶ããï¼ãªã©ãæåã ããããã¯ãåã 人ã®DNAãå®ä¾¡ã§åæããçºçå¯è½æ§ã®ããç æ°ã®æ©æçºè¦ã«å½¹ç«ã¦ããããã²ãã åæãªã©ããã®å¿ç¨ä¾ã¨ãã¦æãããã¨ãã§ãããåæ§ã«æè²ã®åéã§ããåã 人ã®å¦ç¿ãã¼ã¿ã大éã«éãã¦å¤§è¦æ¨¡ã«åæãããã¨ã§æé©ãªå¦ç¿ãæä¾ããã¢ãããã£ã´ã©ã¼ãã³ã°ã¯ãéè¦ãªé åã¨ãã¦èªèããã¦ããã
ã¢ãããã£ã´ã©ã¼ãã³ã°ãåãå ¥ãã代表çãªãã©ãããã©ã¼ã ãµã¼ã´ã£ã¹ãKnewtonãã¯ããã®ç¹å¾´ããContinuous Adaptivityï¼ç¶ç¶çãªã¢ãããã£ã´ã£ãã£ï¼ãã¨è¡¨ãããä¸äººã²ã¨ãã®å¦åã»ç解度ãã¨ãå¦ã¶ã¹ã対象ãããããããããã³ã°ãã¦ãããããç¶ç¶çã«ã¯ãã¹ããããã¨ã«ãã£ã¦ãå人å人ã«æé©ãªãLearning Pathï¼å¦ã³ã®éç¨ï¼ããå®ç¾ãããã¨ãå¯è½ã«ãªãã¨ãããããããã®å¦ã³ã®éç¨ã¯ãå¦ç¿ã®é²æãªã©ã«å¿ãã¦ãã¤ãããã¯ã«å¤åãããå¦ç¿è ä¸äººã²ã¨ããåé¡ä¸åä¸åãã¨ããé常ã«ç´°ããåä½ã§ã®å¾æã»è¦æï¼ãããã¯ç解ã»éç解ï¼ãææ¡ããç解ãä¿é²ãããã®ã«æé©ãªåé¡ãæé©ãªã¿ã¤ãã³ã°ã§æä¾ããããããã¯ç¡é§ãæ¼ãã®ãªããå¹çã®æãé«ãå¦ç¿æ³ã¨è¨ããã ããã
Knewtonã§ç¨ãããã¦ããã¢ã«ã´ãªãºã ããã®å©ç¨æ³ã¯ãä¸è¬å ¬éããã¦ãããã¯ã¤ããã¼ãã¼ã§ãæã«å ¥ãããå½¼ãã«ç´æ¥ã¡ã¼ã«ãæ¸ãã¨ãè¿ éã«è¿äºããããããItem Response Theoryï¼IRTï¼ãããProbablistic Graphical Modelsï¼PGMï¼ãã¨ãã£ãææ³ãé§ä½¿ããå½¼ããå¼ã¶ã¨ããã®âãã¬ãã¸ã°ã©ãâãç¶ç¶çã«å¼·åãã¦ããã詳細ã¯å°éçãããããå²æããããã¨ã©ã®ã¤ã¾ããå½¼ãã¯å¤§è¦æ¨¡ãªãç¥ã®ãªã³ã¡ã³ãã¼ã·ã§ã³ã¨ã³ã¸ã³ããæ§ç¯ãã¦ãããKnewtonã¯ãããã®è«å¤§ãªãã¼ã¿ãåæããããã«ã大éã®ã¯ãªã³ãï¼é«åº¦ãªæ°å¦çææ³ã使ã£ã¦ãå¸å ´ãåæããããæè³æ¦ç¥ãéèååãèæ¡ã»éçºããå°é家ï¼ãæ¡ç¨ããæ¥å¤ã¢ã«ã´ãªãºã ã®æ¹åã«å±ãã§ããã
ãã®å¹æã¯å®è¨¼æ¸ã¿ã ã2011å¹´1æã«ã¢ãªã¾ãå·ç«å¤§å¦ãKnewtonã·ã¹ãã ãå°å ¥ããã¨ãããéä¸ã§ã³ã¼ã¹ããé¢è±ãã¦ãã¾ãçå¾ã®çã¯13ï¼ ãã6ï¼ ã«æ¸å°ããã³ã¼ã¹åæ ¼çã¯66ï¼ ãã75ï¼ ã«ä¸æããã¨ããææãçºè¡¨ããã¦ããã
ã¾ããä¸æµå¤§å¦ã®ææã®ææ¥ãã課é¡æåºãæçµè©¦é¨åæ ¼ã«ããè³æ ¼ä»ä¸ã¾ã§å«ããä¸çä¸ã®ã©ãããã§ãåãããããMOOCï¼Massive Open Online Coursesï¼ããªã©ã«ããã¦ãã¢ãããã£ã´ã©ã¼ãã³ã°ãåãå ¥ããåããåºã¾ã£ã¦ããã大ããªè³éããããããªããæè²åéã§Googleã«å¹æµããä¼æ¥ã®èªçã«ãä¸çä¸ã®æè²é¢ä¿è ãæå¾ ãå¯ãã¦ããã
ãããä¸æ¹ã§ãããããå¦åã®ä½ç³»åããããªã«ç¾ãããã£ããã¨ã§ããã®ãããããå¯è½ã ã¨ãã¦ãé«åº¦ãªã¢ã«ã´ãªãºã ãç¨ããæé©ãªå¦ç¿å 容ã®æä¾ã常ã«å¯è½ãªã®ããã¢ãããã£ã´ã©ã¼ãã³ã°ãªã©ãã¯ã夢ç©èªã«éããªãã®ã§ã¯ãªããããã®ãããªå¦å®çãªæè¦ãå°ãªããªããã ãè£ãè¿ãã°ãããã¯å¦è¡çã«ãå®ç¨çã«ãã¾ã ã¾ã æªéæãªãé常ã«ã¨ããµã¤ãã£ã³ã°ãªé åã§ããã¨è¨ããã ããã
ãã ãããã§ã²ã¨ã¤åé¡æèµ·ããã¦ãããããããã¾ã§ã®ã¢ãããã£ã´ã©ã¼ãã³ã°ã¯ããã³ã³ãã³ãã¢ãããã£ã´ããããªãã¡å人å人ã®å¦åã»ç解度ã«ãã£ãã³ã³ãã³ããæä¾ãããã¨ã«ã®ã¿ç¦ç¹ãå½ã¦ããã¦ãããã ãæ¬æ¥ãå¦ç¿ã¨ãããã®ã¯ãã£ã¨å¤è§çã§è¤éã§ããããã¾ãã¾ãªãã¢ãããã£ã´ããåå¨ãããã®ã§ã¯ãªããã
ä¾ãã°ãå¦ç¿ã¹ã¿ã¤ã«ã¢ãããã£ã´ã¨å¦ç¿ã·ãã¥ã¨ã¼ã·ã§ã³ã¢ãããã£ã´ã¨ãããã®ãèãããããå¦ç¿ã¹ã¿ã¤ã«ã¢ãããã£ã´ã¯ããä¸äººã²ã¨ãç°ãªãå¦ç¿ã®ã¹ã¿ã¤ã«ã«å¿ãã¦ãæé©ãªå¦ç¿æ¹æ³ãæä¾ãããã¨ãããã®ã§ãããæè¨ãå¾æã§ä½ã§ãããè¦ãã¦ãã¾ã人ãæ·±ãç解ãããã¨ã«ãã£ã¦ãã®ç¥èãèªå¨ã«å¿ç¨ã§ãã人ãã²ã¼ã ãéãã¦ã§ãªãã¨ç©äºãè¦ããããªã人ãªã©ããã¾ãã¾ãªå¦ç¿ã¹ã¿ã¤ã«ãåå¨ããããããã£ãåã ã®å¦ç¿ã¹ã¿ã¤ã«ã¯ãªããªãå¤ãããããå¦ç¿å¹çã«é常ã«å¤§ããªå½±é¿ãåã¼ããã®ã ãåå人ã®ã¹ã¿ã¤ã«ã«å¿ãã¦ãã²ã¼ã è¦ç´ ãä»å ããããæè¨é¨åãè£å¼·ããããåé¡æ°ãæ¸ããã¦ä»£è¡¨çä¾é¡ãæ·±ãç解ããããããããåé¡ã®åºãåããèªç±èªå¨ã«å¯è½ã¨ãªãã°ãããå¹çããå¦ç¿ãããã¨ãã§ããããã«ãªãã ããã
å¦ç¿ã·ãã¥ã¨ã¼ã·ã§ã³ã¢ãããã£ã´ã¯ãåå人ã®ç¶æ³ã«å¿ãã¦ç°ãªãå¦ç¿æ¹æ³ãæ示ããã¨ãããã®ã ãä¾ãã°ç解ãä¸å¿ã¨ãªãå¹³æã®å¦ç¿ã¨ãæè¨ãä¸å¿ã¨ãªã試é¨ç´åã®å¦ç¿ã¨ã§ã¯ãç°ãªãæ¹æ³ãæä¾ããã¨ãã£ããã¨ãæ³å®ãããã
ãã®ããã«ãçã®å¦ååä¸ã«ã¯ã³ã³ãã³ãããã²ã¨ã¤ã®è¦ç´ ã«ãããªããã¢ãã¤ã«ã¨ããã¨ã¦ããã¼ã½ãã«ãªéå ·ã¨ããããã絶ãéãªãåãåºããã大éã®ãã¼ã¿ãåæãã¦æå³ãæ½åºããããã°ãã¼ã¿æè¡ãã¤ã³ãã©ãæ´ã£ããã¾ããã®ä»ãã¾ãã¾ãªã¢ãããã£ã´ã©ã¼ãã³ã°ã®ã¢ã¤ãã¢ããä¸çä¸è³ãæãã次ã ã¨èªçãã¦ããã®ã§ãããã
ãé¢é£è¨äºã
å¦ã³ã®æªæ¥ã¸ã½ã¼ã·ã£ã«ã²ã¼ã ãå°ãï¼ ãæè²ã®ã²ã¼ããã£ã±ã¼ã·ã§ã³ãã¨æ³¨ç®ã®ãµã¼ã´ã£ã¹
æ¬éæä¹ | TAKUYA HOMMA
ãQuipperã ãã¼ã±ãã£ã³ã°ãã£ã¬ã¯ã¿ã¼ãæ±äº¬å¤§å¦çµæ¸å¦é¨å¨å¦ä¸ã«ããã¦ã§ãé²åè«ãã®èè
æ¢
ç°æ夫ã«å¼åå
¥ããæ±äº¬ã¨ã·ãªã³ã³ã´ã¡ã¬ã¼ãæ ç¹ã«æ´»åããæ¢
ç°æ夫ã¨é£¯åéã®å
±èãã¦ã§ãã§å¦ã¶ãã®å·çã«é¢ä¸ããã®å¾æ±äº¬å¤§å¦ãä¸éããUniversity College Londonï¼è±å½ï¼ã«å
¥å¦ãå¨å¦ä¸ã«ã¤ã³ãã»ä¸å½ã»ã¢ããªã«ãåããéä¸å½ã«ãããã¢ãã¤ã«ã©ã¼ãã³ã°ã«å¤§ããªãå¯è½æ§ãè¦ãåºããåææã«ãå¦ç¿æä¾è
ã¨å¦ç¿è
ãã¤ãªããã©ã¼ãã³ã°ã»ãã©ãããã©ã¼ã ãéå¶ãããã³ãã³çºã®ã¹ã¿ã¼ãã¢ãããQuipperã代表ã®æ¸¡è¾ºé
ä¹ã«èªããå¨å¦ä¸ããæä¼ããå§ãã2012å¹´9æã«USäºæ¥ããã³å
¨ç¤¾ãã¼ã±ãã£ã³ã°æ
å½ã®ãã£ã¬ã¯ã¿ã¼ã«æ£å¼ã«å°±ä»»ãTwitter: @TakuyaQuipper
TEXT BY TAKUYA HOMMA (QUIPPER)