This page was created by Christian G. Bower and is a sub-page of the On-Line Encyclopedia of Integer Sequences.
Keywords: AFJ, AFK, AGJ, AGK, AIJ, BFJ, BFK, BGJ, BGK, BHJ, BHK, BIJ, BIK, CFJ, CFK, CGJ, CGK, CHJ, CHK, CIJ, CIK, DFJ, DFK, DGJ, DGK, DHJ, DHK, DIJ, DIK, EFJ, EFK, EGJ.
Table of Contents
This is a generalization of transforms that count the ways objects can be partitioned.
Say we have boxes of different colors and sizes.
The sequence {an;n>=1} represents the number of colors a box holding n balls can be. The transformed sequence {bn;n>=1} represents the number of ways we can have a collection of boxes so that the total number of balls is n, subject to the following rules.
A. Linear (ordered)
The boxes are in a line from beginning to end.
B. Linear with turning over (reversible)
C. Circular (necklace)
D. Circular with turning over (bracelet)
E. None (unordered)
|
F. Size
No two boxes are the same size.
G. Element
H. Identity
I. None (indistinct)
|
Distinctness H (identity) has different implications depending on the chosen order.
J. Labeled
The balls in the boxes are labeled.
K. Unlabeled
|
Each transform is identified by a 3 letter code, e.g.
BGJ
to represent
linear order with turning over,
each object distinct,
labeled.
An X is a wild card as in
CXK,
unlabeled
necklace
transforms.
AIK is the transform
INVERT.
EGK is the transform
WEIGH.
EIJ is the transform
EXP.
EIK is the transform
EULER.
There are 5×4×2=40 of these transforms.
However, the AHX and EHX transforms are redundant, leaving 36. Four of them are named. As far as I know, the other 32 are not. The new and old sequence listed illustrate the 32 new transforms.
Terminology:
More information about necklaces.
M. Bernstein & N. J. A. Sloane, Some canonical sequences of integers, Linear Algebra and its Applications, 226-228 (1995), 57-72.
A000081, rooted trees, 1,1,2,4,9,20,48,115... is an eigensequence of the transform EULER. because the transformed sequence, 1,2,4,9,20,48,115,286,..., is the original sequence shifted left one place.
an is the input sequence.
bn is the output sequence.
A(x) is the generating function of an.
B(x) is the generating function of bn.
(XXX a)n = sum{k=1 to n} (XXXk a)n
MÖBIUS · XXX refers to the Möbius transform of the sequence transformed by XXX. Similarly for MÖBIUS-1 · XXX. However, (MÖBIUS · XXX)k and (MÖBIUS-1 · XXX)k are defined as follows:
(MÖBIUS · XXX)kan = sum{d|k and d|n} (µ(d) × XXXk/dan/d)
(MÖBIUS-1 · XXX)kan = sum{d|k and d|n} (XXXk/dan/d)
AIK = INVERT
B(x) = A(x) / (1-A(x))
AIKk
B(x) = A(x)k
LPALk (Linear palindrome)
If n, k even:
bn = (AIKk/2a)n/2
If n odd, k even:
bn = 0
If n even, k odd:
bn = sum{i>0 and i<n/2}
(a2i × (AIK(k-1)/2a)n/2-i)
if n,k odd:
bn = sum{i>0 and i<n/2}
(a2i-1 × (AIK(k-1)/2a)(n+1)/2-i)
BIKk
bn = ((AIKka)n +
(LPALka)n) / 2
BHKk
k=1:
bn = an
k>1:
bn = ((AIKka)n -
(LPALka)n) / 2
CHKk
bn = (MÖBIUS · AIK)kan / n
CIK
CIK = MÖBIUS-1 · CHK
CPALk (Circular palindrome)
CPAL1 = IDENTITY
CPAL2 = CIK2
k>2:
If n, k even:
bn = (I+J)/2+K+L+M where:
(No boxes joined)
I=(AIKk/2a)n/2
(2 boxes joined are identical)
J=sum{i=1 to n/2}(AIKk/2-1a)(n-2i)/2
(2 boxes joined are even and different sizes)
K=sum{i,j even, j>i, i+j<n}
(ai × aj ×
(AIKk/2-1a)(n-i-j)/2)
(2 boxes joined are odd and different sizes)
L=sum{i,j odd, j>i, i+j<n}
(ai × aj ×
(AIKk/2-1a)(n-i-j)/2)
(2 boxes joined are the same size and different colors)
M=sum{i>0 and i<n/2}
((ai2-ai)/2 ×
(AIKk/2-1a)(n-2i)/2)
If n odd, k even:
bn = sum{i odd, j even, i+j<n}
(ai × aj ×
((AIKk/2-1a)(n-i-j)/2)
If n even, k odd:
bn = sum{i>0 and i<n/2}
(a2i × (AIK(k-1)/2a)n/2-i)
if n,k odd:
bn = sum{i>0 and i<n/2}
(a2i-1 × (AIK(k-1)/2a)(n+1)/2-i)
DIKk
bn =
((CIKka)n +
(CPALka)n) / 2
DHKk
DHK1 = IDENTITY
DHK2 = CHK2
For k>2:
DHKk = (MÖBIUS ·
(CIK - CPAL)/2)k
If EXX is one of: {EFJ, EFK, EGJ, EGK,
EIJ} then:
AXXk = k! × EXXk
BXXk = max(1,k!/2) × EXXk
CXXk = (k-1!) × EXXk
DXXk = max(1,(k-1)!/2) × EXXk
To calculate (EFXka)n, enumerate
the distinct partitions of n into k parts as terms of the following form:
p1+p2+...+pk
Sum the terms calculated as follows:
EFJk:
prod{i=1 to k}api × n! /
prod{i=1 to k}pi!
EFKk:
prod{i=1 to k}api
EFK can also be calculated as:
B(x)=prod{k=1 to infinity}(1+akxk).
To calculate (AIJka)n,
(BHJka)n,
(CHJka)n or
(EGXka)n, enumerate the partitions of
of n into k parts as terms of the following form:
p1q1+p2q2+...+pjqj
where all the pi's are distinct.
Sum the terms calculated as follows:
AIJk:
prod{i=1 to j}apiqi
× n! × k! /
((prod{i=1 to j}pi!qi) ×
(prod{i=1 to j}qi!))
BHJk:
term1 =
prod{i=1 to j}apiqi
× k! /
(prod{i=1 to j}qi!)
term2 =
prod{i=1 to j}api[qi/2]
× [k/2]! /
(prod{i=1 to j}[qi/2]!)
If more than 1 qi is odd: term3 = term1
otherwise: term3 = term1 - term2
term = term3 × n! /
prod{i=1 to j}pi!qi / 2
CHJk:
term2 =
sum{d|qm for all m} (µ(d) ×
prod{i=1 to j}api[qi/d]
× [k/d]! /
(prod{i=1 to j}[qi/d]!))
term = term2 × n! /
prod{i=1 to j}pi!qi / k
EGJk:
prod{i=1 to j}C(api,qi) × n! /
prod{i=1 to j}pi!qi
EGKk:
prod{i=1 to j}C(api,qi)
DHJ:
Work is in progress.
Part 3: Catalogue of sequences
This table identifies a formula for each sequence, usually based on one of the transforms. This should provide a convenient way to browse the sequences and see how the transforms apply to a broad class of mathematics.
The base sequences:
These transforms have been applied to one of the base sequences defined in the following table or to sequences in the On-line Encyclopedia of Integer Sequences, identified by number.
s1, s2, s3... | sk1 = k, skn=0 for n>1 |
all1, all2, all3,... | allkn = k for all n |
codd (characteristic of odd) | coddn = 1 if n is odd, 0 otherwise |
noone | noone1=0, noonen=1 for n>1 |
twoone | twoone1=2, twoonen=1 for n>1 |
iden | idenn=n |
odd | oddn=2n-1 |
even | evenn=2n |
If T is a transform:
Left(n;k1, k2,..., kn)T
is the
eigensequence
that shifts left n places
under T and has ai=ki
for 1<=i<=n.
M2(n)T is the
eigensequence
that doubles the terms whose indices
are greater than 1 under T.
AFJ sequences
A032000 | AFJ all2 |
A032001 | AFJ twoone |
A032002 | AFJ iden |
A032003 | AFJ odd |
A032004 | Left(1;1)AFJ |
AFK sequences
A032005 | AFK all2 |
A032006 | AFK twoone |
A032007 | AFK iden |
A032008 | AFK odd |
A032009 | Left(1;1)AFK |
A032010 | (CFK A032009 )n-1 |
AGJ sequences
A032011 | AGJ all1 |
A032012 | AGJ codd |
A032013 | AGJ noone |
A032014 | AGJ all2 |
A032015 | AGJ twoone |
A032016 | AGJ iden |
A032017 | AGJ odd |
A032018 | Left(1;1)AGJ |
A032019 | M2(2)AGJ |
AGK sequences
A032020 | AGK all1 |
A032021 | AGK codd |
A032022 | AGK noone |
A032023 | AGK all2 |
A032024 | AGK twoone |
A032025 | AGK iden |
A032026 | AGK odd |
A032027 | Left(1;1)AGK |
A032028 | (CGK A032027 )n-1 |
A032029 | Left(2;1,1)AGK |
A032030 | M2(2)AGK |
AIJ sequences
A000142 | AIJ s1 |
A000165 | AIJ s2 |
A032031 | AIJ s3 |
A000670 | AIJ all1 |
A000918 | AIJ2 all1 |
A001117 | AIJ3 all1 |
A000919 | AIJ4 all1 |
A001118 | AIJ5 all1 |
A000920 | AIJ6 all1 |
A006154 | AIJ codd |
A032032 | AIJ noone |
A004123 | AIJ all2 |
A006155 | AIJ twoone |
A032033 | AIJ all3 |
A006153 | AIJ iden |
A000354 | AIJ odd |
A001147 | Left(1;1)AIJ |
A032034 | Left(1;2)AIJ |
A032035 | Left(2;1,1)AIJ |
A032036 | Left(3;1,1,1)AIJ |
A032037 | M2(1)AIJ |
BFJ sequences
A032038 | BFJ all2 |
A032039 | BFJ twoone |
A032040 | BFJ iden |
A032041 | BFJ odd |
A032042 | Left(1;1)BFJ |
BFK sequences
A032043 | BFK all2 |
A032044 | BFK twoone |
A032045 | BFK iden |
A032046 | BFK odd |
A032047 | Left(1;1)BFK |
A032048 | (CFK A032047 )n-1 |
BGJ sequences
A032049 | BGJ all1 |
A032050 | BGJ codd |
A032051 | BGJ noone |
A032052 | BGJ all2 |
A032053 | BGJ twoone |
A032054 | BGJ iden |
A032055 | BGJ odd |
A032056 | Left(1;1)BGJ |
A032057 | M2(2)BGJ |
BGK sequences
A032058 | BGK all1 |
A032059 | BGK codd |
A032060 | BGK noone |
A032061 | BGK all2 |
A032062 | BGK twoone |
A032063 | BGK iden |
A032064 | BGK odd |
A032065 | Left(1;1)BGK |
A032066 | (CGK A032065 )n-1 |
A032067 | Left(2;1,1)BGK |
A032068 | M2(2)BGK |
BHJ sequences
A032069 | BHJ s2 |
A032070 | BHJ s3 |
A032071 | BHJ s4 |
A032072 | BHJ s5 |
A032073 | BHJ all1 |
A032074 | BHJ codd |
A032075 | BHJ noone |
A032076 | BHJ all2 |
A032077 | BHJ twoone |
A032078 | BHJ all3 |
A032079 | BHJ iden |
A032080 | BHJ odd |
A032081 | Left(1;1)BHJ |
A032082 | Left(1;2)BHJ |
A032083 | Left(2;1,1)BHJ |
A032084 | M2(2)BHJ |
BHK sequences
A032085 | BHK s2 |
A032086 | BHK s3 |
A032087 | BHK s4 |
A032088 | BHK s5 |
A032089 | BHK codd |
A032090 | BHK noone |
A002620 | (BHK3 all1)n+2 |
A006584 | (BHK4 all1)n+2 |
A032091 | BHK5 all1 |
A032092 | BHK6 all1 |
A032093 | BHK7 all1 |
A032094 | BHK8 all1 |
A032095 | (BHKn all1)2n-1 |
A032096 | BHK all2 |
A032097 | BHK twoone |
A032098 | BHK all3 |
A032099 | BHK iden |
A032100 | BHK odd |
A032101 | Left(1;1)BHK |
A032102 | (DHK A032101 )n-1 |
A032103 | Left(1;2)BHK |
A032104 | Left(1;1,1)BHK |
A032105 | M2(2)BHK |
A032106 | (BHKn all1)2n |
BIJ sequences
A001710 | BIJ s1 |
A032107 | BIJ s2 |
A032108 | BIJ s3 |
A032109 | BIJ all1 |
A009568 | (-1)n+1 × BIJ codd |
A032110 | BIJ noone |
A032111 | BIJ all2 |
A032112 | BIJ twoone |
A032113 | BIJ all3 |
A032114 | BIJ iden |
A032115 | BIJ odd |
A032116 | Left(1;1)BIJ |
A032117 | Left(1;2)BIJ |
A032118 | Left(2;1,1)BIJ |
A032119 | M2(1)BIJ |
BIK sequences
A005418 | (BIK s2)n-1 |
A005418 | BIK all1 |
A032120 | BIK s3 |
A032121 | BIK s4 |
A032122 | BIK s5 |
A001224 | (BIK codd)n+1 |
A001224 | (BIK noone)n+2 |
A002620 | (BIK3 all1)n+1 |
A005993 | (BIK4 all1)n+4 |
A005994 | (BIK5 all1)n+5 |
A005995 | (BIK6 all1)n+6 |
A018210 | (BIK7 all1)n+7 |
A018211 | (BIK8 all1)n+8 |
A018212 | (BIK9 all1)n+9 |
A018213 | (BIK10 all1)n+10 |
A018214 | (BIK11 all1)n+11 |
A032123 | (BIKn all1)2n-1 |
A005654 | (BIKn all1)2n |
A005656 | (BIKn-3 all1)2n-3 |
A032124 | BIK all2 |
A032125 | BIK all3 |
A005207 | BIK twoone |
A032126 | BIK iden |
A032127 | BIK odd |
A032128 | Left(1;1)BIK |
A032129 | (DIK A032128 )n-1 |
A032130 | Left(1;2)BIK |
A032131 | Left(2;1,1)BIK |
A032132 | M2(1)BIK |
A032133 | M2(2)BIK |
CFJ sequences
A032134 | CFJ all2 |
A032135 | CFJ twoone |
A032136 | CFJ iden |
A032137 | CFJ odd |
A032138 | Left(1;1)CFJ |
CFK sequences
A032139 | CFK all2 |
A032140 | CFK twoone |
A032141 | CFK iden |
A032142 | CFK odd |
A032143 | Left(1;1)CFK |
CGJ sequences
A032144 | CGJ all1 |
A032145 | CGJ codd |
A032146 | CGJ noone |
A032147 | CGJ all2 |
A032148 | CGJ twoone |
A032149 | CGJ iden |
A032150 | CGJ odd |
A032151 | Left(1;1)CGJ |
A032152 | M2(2)CGJ |
CGK sequences
A032153 | CGK all1 |
A032154 | CGK codd |
A032155 | CGK noone |
A032156 | CGK all2 |
A032157 | CGK twoone |
A032158 | CGK iden |
A032159 | CGK odd |
A032160 | Left(1;1)CGK |
A032161 | Left(1;2)CGK |
A032162 | Left(2;1,1)CGK |
A032163 | M2(2)CGK |
CHJ sequences
A032321 | CHJ s2 |
A032322 | CHJ s3 |
A032323 | CHJ s4 |
A032324 | CHJ s5 |
A032325 | CHJ all1 |
A032326 | CHJ codd |
A032327 | CHJ noone |
A032328 | CHJ all2 |
A032329 | CHJ twoone |
A032330 | CHJ all3 |
A032331 | CHJ iden |
A032332 | CHJ odd |
A032333 | Left(1;1)CHJ |
A032334 | Left(1;2)CHJ |
A032335 | Left(2;1,1)CHJ |
A032336 | M2(2)CHJ |
CHK sequences
A001037 | CHK s2 |
A001037 | (CHK all1) + s1 |
A027376 | CHK s3 |
A027376 | (CHK all2) + s1 |
A027376 | (CHK odd) + s2 |
A027377 | CHK s4 |
A027377 | (CHK all3) + s1 |
A001692 | CHK s5 |
A027378 | CHK s5 |
A032164 | CHK s6 |
A001693 | CHK s7 |
A027379 | CHK s7 |
A027380 | CHK s8 |
A027381 | CHK s9 |
A032165 | CHK s10 |
A032166 | CHK s11 |
A032167 | CHK s12 |
A006206 | (CHK codd) + CHAR({2}) |
A006206 | (CHK noone) + s1 |
A001840 | (CHK3 all1)n+4 |
A006918 | (CHK4 all1)n+4 |
A011795 | (CHK5 all1)n+1 |
A011796 | (CHK6 all1)n+6 |
A011797 | (CHK7 all1)n+1 |
A031164 | (CHK8 all1)n+9 |
A011845 | CHK9 all1 |
A032168 | CHK10 all1 |
A032169 | CHK11 all1 |
A000108 | (CHKn+1 all1)2n+1 |
A022553 | (CHKn+1 all1)2n+2 |
A022553 | (CHK A000108 )n-1 |
A032170 | CHK iden |
A032170 | CHK twoone + s1 |
A032171 | Left(1;1)CHK |
A032172 | Left(1;2)CHK |
A032173 | Left(2;1,1)CHK |
A032174 | M2(2)CHK |
A032175 | CHK A004111 |
A032176 | WEIGH A032175 |
A032177 | A032176 - A004111 |
A032178 | WEIGH A032177 |
CIJ sequences
A000142 | (CIJ s1)n+1 |
A000165 | (CIJ s2)n+1 × 2 |
A032179 | CIJ s3 |
A000629 | CIJ all1 |
A000225 | (CIJ2 all1)n+1 |
A028243 | CIJ3 all1 |
A028244 | CIJ4 all1 |
A028245 | CIJ5 all1 |
A032180 | CIJ6 all1 |
A003704 | (-1)n+1 × (CIJ codd) |
A032181 | CIJ noone |
A027882 | CIJ all2 |
A032182 | CIJ twoone |
A032183 | CIJ all3 |
A009444 | (-1)n+1 × (CIJ iden) |
A032184 | CIJ odd |
A029768 | Left(1;1)CIJ |
A032185 | Left(1;2)CIJ |
A032186 | Left(2;1,1)CIJ |
A032187 | Left(3;1,1,1)CIJ |
A032188 | M2(1)CIJ |
CIK sequences
A000031 | CIK s2 |
A000031 | (CIK all1) + all1 |
A008965 | CIK all1 |
A008965 | (CIK s2) - all1 |
A001867 | CIK s3 |
A001867 | (CIK all2) + all1 |
A001868 | CIK s4 |
A001868 | (CIK all3) + all1 |
A001869 | CIK s5 |
A001869 | (CIK all4) + all1 |
A032189 | CIK codd |
A032190 | CIK noone |
A000358 | (CIK noone) + all1 |
A007997 | (CIK3 all1)n+3 |
A008610 | (CIK4 all1)n+4 |
A008646 | (CIK5 all1)n+5 |
A032191 | CIK6 all1 |
A032192 | CIK7 all1 |
A032193 | CIK8 all1 |
A032194 | CIK9 all1 |
A032195 | CIK10 all1 |
A032196 | CIK11 all1 |
A032197 | CIK12 all1 |
A000108 | (CHKn+1 all1)2n+1 |
A003239 | (CIKn-1 all1)2n-2 |
A003239 | (CIK A000108 n-1)n-1 |
A005594 | CIK twoone |
A032198 | CIK iden |
A032199 | CIK odd |
A032200 | Left(1;1)CIK |
A032201 | Left(1;2)CIK |
A032202 | Left(2;1,1)CIK |
A032203 | M2(1)CIK |
A032204 | M2(2)CIK |
A002861 | CIK A000081 |
A027852 | CIK2 A000081 |
A029852 | CIK3 A000081 |
A029853 | CIK4 A000081 |
A029868 | CIK5 A000081 |
A029869 | CIK6 A000081 |
A029870 | CIK7 A000081 |
A029871 | CIK8 A000081 |
A032205 | CIK9 A000081 |
A032206 | CIK10 A000081 |
A032207 | CIK11 A000081 |
A032208 | CIK12 A000081 |
DFJ sequences
A032209 | DFJ all2 |
A032210 | DFJ twoone |
A032211 | DFJ iden |
A032212 | DFJ odd |
A032213 | Left(1;1)DFJ |
DFK sequences
A032214 | DFK all2 |
A032215 | DFK twoone |
A032216 | DFK iden |
A032217 | DFK odd |
A032218 | Left(1;1)DFK |
DGJ sequences
A032219 | DGJ all1 |
A032220 | DGJ codd |
A032221 | DGJ noone |
A032222 | DGJ all2 |
A032223 | DGJ twoone |
A032224 | DGJ iden |
A032225 | DGJ odd |
A032226 | Left(1;1)DGJ |
A032227 | M2(2)DGJ |
DGK sequences
A032228 | DGK all1 |
A032229 | DGK codd |
A032230 | DGK noone |
A032231 | DGK all2 |
A032232 | DGK twoone |
A032233 | DGK iden |
A032234 | DGK odd |
A032235 | Left(1;1)DGK |
A032236 | Left(1;2)DGK |
A032237 | Left(2;1,1)DGK |
A032238 | M2(2)DGK |
DHJ sequences
A032337 | DHJ s2 |
A032338 | DHJ s3 |
A032339 | DHJ s4 |
A032340 | DHJ s5 |
DHK sequences
A032239 | DHK s2 |
A032240 | DHK s3 |
A032241 | DHK s4 |
A032242 | DHK s5 |
A032243 | DHK codd |
A032244 | DHK noone |
A032245 | DHK all1 |
A001399 | (DHK3 all1)n+6 |
A018845 | (DHK3 all1)n+6 |
A026809 | (DHK3 all1)n+3 |
A008804 | (DHK4 all1)n+7 |
A032246 | DHK5 all1 |
A032247 | DHK6 all1 |
A032248 | DHK7 all1 |
A032249 | DHK8 all1 |
A032250 | (DHKn all1)2n |
A032251 | DHK all2 |
A032252 | DHK twoone |
A032253 | DHK all3 |
A032254 | DHK iden |
A032255 | DHK odd |
A032256 | Left(1;1)DHK |
A032257 | Left(1;2)DHK |
A032258 | Left(2;1,1)DHK |
A032259 | M2(2)DHK |
A032260 | (DHKn all1)2n-1 |
DIJ sequences
A001710 | (DIJ s1)n+1 |
A000165 | (DIJ s2)n+1 - s2 |
A032261 | DIJ s3 |
A032262 | DIJ all1 |
A000225 | (DIJ2 all1)n+1 |
A000392 | DIJ3 all1 |
A032263 | DIJ4 all1 |
A032264 | DIJ codd |
A032265 | DIJ noone |
A032266 | DIJ all2 |
A032267 | DIJ twoone |
A032268 | DIJ all3 |
A032269 | DIJ iden |
A032270 | DIJ odd |
A032271 | Left(1;1)DIJ |
A032272 | Left(1;2)DIJ |
A032273 | Left(2;1,1)DIJ |
A032274 | M2(1)DIJ |
DIK sequences
A000029 | DIK s2 |
A000029 | (DIK all1) + all1 |
A027671 | DIK s3 |
A032275 | DIK s4 |
A032276 | DIK s5 |
A032277 | DIK codd |
A032278 | DIK noone |
A001399 | (DIK3 all1)n+3 |
A018845 | (DIK3 all1)n+3 |
A026809 | DIK3 all1 |
A005232 | DIK4 all1 |
A032279 | DIK5 all1 |
A005513 | DIK6 all1 |
A032280 | DIK7 all1 |
A005514 | DIK8 all1 |
A032281 | DIK9 all1 |
A005515 | DIK10 all1 |
A032282 | DIK11 all1 |
A005516 | DIK12 all1 |
A005648 | (DIKn all1)2n |
A007123 | (DIKn all1)2n-1 |
A032283 | DIK all2 |
A032284 | DIK all3 |
A032285 | DIK all4 |
A032286 | DIK all5 |
A005595 | DIK twoone |
A032287 | DIK iden |
A032288 | DIK odd |
A032289 | Left(1;1)DIK |
A032290 | Left(1;2)DIK |
A032291 | Left(2;1,1)DIK |
A032292 | M2(1)DIK |
A032293 | M2(2)DIK |
A001371 | MÖBIUS A000029 |
A032294 | MÖBIUS A027671 |
A032295 | MÖBIUS A032275 |
A032296 | MÖBIUS A032276 |
EFJ sequences
A032297 | EFJ all2 |
A032298 | EFJ twoone |
A032299 | EFJ iden |
A032300 | EFJ odd |
A032301 | Left(1;1)EFJ |
EFK sequences
A032302 | EFK all2 |
A032303 | EFK twoone |
A022629 | EFK iden |
A032304 | EFK odd |
A032305 | Left(1;1)EFK |
A032306 | Left(1;2)EFK |
A032307 | Left(2;1,1)EFK |
A032308 | EFK all3 |
A032309 | EFK even |
EGJ sequences
A007837 | EGJ all1 |
A032310 | EGJ codd |
A032311 | EGJ noone |
A032312 | EGJ all2 |
A032313 | EGJ twone |
A032314 | EGJ all3 |
A032315 | EGJ iden |
A032316 | EGJ odd |
A032317 | Left(1;1)EGJ |
A032318 | Left(1;2)EGJ |
A032319 | Left(2;1,1)EGJ |
A032320 | M2(2)EGJ |