OFFSET
1,4
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..200
C. G. Bower, Transforms (2)
FORMULA
Shifts left under "AGK" (ordered, elements, unlabeled) transform.
EXAMPLE
From Gus Wiseman, Nov 15 2022: (Start)
The a(1) = 1 through a(6) = 13 ordered rooted identity trees (ranked by A358374):
o (o) ((o)) ((o)o) (((o))o) (((o)o)o)
(o(o)) (((o)o)) ((o(o))o)
(((o))) ((o(o))) (o((o)o))
(o((o))) (o(o(o)))
((((o)))) ((((o)))o)
((((o))o))
((((o)o)))
(((o))(o))
(((o(o))))
((o)((o)))
((o((o))))
(o(((o))))
(((((o)))))
(End)
MATHEMATICA
aot[n_]:=If[n==1, {{}}, Join@@Table[Tuples[aot/@c], {c, Join@@Permutations/@IntegerPartitions[n-1]}]];
Table[Length[Select[aot[n], FreeQ[#, _[__]?(!UnsameQ@@#&)]&]], {n, 1, 10}] (* Gus Wiseman, Nov 15 2022 *)
PROG
(PARI)
AGK(v)={apply(p->subst(serlaplace(y^0*p), y, 1), Vec(prod(k=1, #v, (1 + x^k*y + O(x*x^#v))^v[k])-1, -#v))}
seq(n)={my(v=[1]); for(i=2, n, v=concat([1], AGK(v))); v} \\ Andrew Howroyd, Sep 20 2018
CROSSREFS
These trees (ordered rooted identity) are ranked by A358374.
KEYWORD
nonn,eigen
AUTHOR
STATUS
approved