login
A032027
Number of planted planar trees (n+1 nodes) where any 2 subtrees extending from the same node are different.
16
1, 1, 1, 3, 5, 13, 35, 95, 255, 715, 2081, 6003, 17645, 52127, 155863, 468129, 1415521, 4301055, 13134789, 40275109, 123970669, 382919917, 1186475687, 3686899725, 11487023793, 35876838669, 112304155021, 352276801491
OFFSET
1,4
FORMULA
Shifts left under "AGK" (ordered, elements, unlabeled) transform.
EXAMPLE
From Gus Wiseman, Nov 15 2022: (Start)
The a(1) = 1 through a(6) = 13 ordered rooted identity trees (ranked by A358374):
o (o) ((o)) ((o)o) (((o))o) (((o)o)o)
(o(o)) (((o)o)) ((o(o))o)
(((o))) ((o(o))) (o((o)o))
(o((o))) (o(o(o)))
((((o)))) ((((o)))o)
((((o))o))
((((o)o)))
(((o))(o))
(((o(o))))
((o)((o)))
((o((o))))
(o(((o))))
(((((o)))))
(End)
MATHEMATICA
aot[n_]:=If[n==1, {{}}, Join@@Table[Tuples[aot/@c], {c, Join@@Permutations/@IntegerPartitions[n-1]}]];
Table[Length[Select[aot[n], FreeQ[#, _[__]?(!UnsameQ@@#&)]&]], {n, 1, 10}] (* Gus Wiseman, Nov 15 2022 *)
PROG
(PARI)
AGK(v)={apply(p->subst(serlaplace(y^0*p), y, 1), Vec(prod(k=1, #v, (1 + x^k*y + O(x*x^#v))^v[k])-1, -#v))}
seq(n)={my(v=[1]); for(i=2, n, v=concat([1], AGK(v))); v} \\ Andrew Howroyd, Sep 20 2018
CROSSREFS
The unordered version is A004111, ranked by A276625.
These trees (ordered rooted identity) are ranked by A358374.
Sequence in context: A283844 A324783 A032009 * A360863 A005383 A306826
KEYWORD
nonn,eigen
STATUS
approved