OFFSET
0,2
COMMENTS
Equals (1/2) * ((1, 8, 36, 120, 330, 792,...) + (1, 0, 4, 0, 10, 0, 20,...)); where (1, 8, 36,..) = A000580 = C(n,7), and (1, 4, 10,...) = the Tetrahedral numbers.
REFERENCES
S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926.
Winston C. Yang (paper in preparation).
LINKS
N. J. A. Sloane, Classic Sequences
S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926. (Annotated scanned copy)
Index entries for linear recurrences with constant coefficients, signature (4, -2, -12, 17, 8, -28, 8, 17, -12, -2, 4, -1).
FORMULA
G.f.: (1+6*x^2+x^4)/((1-x)^4*(1-x^2)^4). [ N. J. A. Sloane ]
l(c, r) = 1/2 binomial(c+r-3, r) + 1/2 d(c, r), where d(c, r) is binomial((c + r - 3)/2, r/2) if c is odd and r is even, 0 if c is even and r is odd, binomial((c + r - 4)/2, r/2) if c is even and r is even, binomial((c + r - 4)/2, (r - 1)/2) if c is odd and r is odd.
a(n) = (1/(2*7!))*(n+1)*(n+2)*(n+3)*(n+4)*(n+5)*(n+6)*(n+7) + (1/3)*(1/2^5)*(n+2)*(n+4)*(n+6)*(1/2)*(1+(-1)^n) [Yosu Yurramendi Jun 23 2013]
MAPLE
a:= n-> (Matrix([[1, 0$7, -1, -4, -20, -60]]). Matrix(12, (i, j)-> `if`(i=j-1, 1, `if`(j=1, [4, -2, -12, 17, 8, -28, 8, 17, -12, -2, 4, -1][i], 0)))^n)[1, 1]: seq(a(n), n=0..31); # Alois P. Heinz, Jul 31 2008
MATHEMATICA
LinearRecurrence[{4, -2, -12, 17, 8, -28, 8, 17, -12, -2, 4, -1}, {1, 4, 20, 60, 170, 396, 868, 1716, 3235, 5720, 9752, 15912}, 32] (* Ray Chandler, Sep 23 2015 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Winston C. Yang (yang(AT)math.wisc.edu)
STATUS
approved