login
A032248
"DHK[ 7 ]" (bracelet, identity, unlabeled, 7 parts) transform of 1,1,1,1,...
9
4, 10, 28, 56, 113, 197, 340, 544, 856, 1284, 1896, 2709, 3816, 5247, 7128, 9504, 12540, 16302, 21001, 26728, 33748, 42185, 52364, 64448, 78832, 95725, 115600, 138720, 165648, 196707, 232560, 273600, 320601, 374034, 434796, 503448, 581020, 668173, 766084
OFFSET
10,1
COMMENTS
From Petros Hadjicostas, Feb 24 2019: (Start)
When k is odd >= 3, the DHK[k] transform of sequence c = (c(n): n >= 1), whose g.f. is C(x) = Sum_{n>=1} c(n)*x^n, has g.f. Sum_{n>=1} (DHK[k] c)_n*x^n = (1/2)*Sum_{d|k} mu(d)*((1/k)*C(x^d)^(k/d) - C(x^d)*C(x^(2*d))^((k/d) - 1)/2)).
For the current sequence we have k = 7 and c(n) = 1 for all n >= 1. Hence, C(x) = x/(1-x) and A(x) = Sum_{n>=1} a(n)*x^n = (x^k/2)*Sum_{d|k} mu(d)*((1/k)*(1-x^d)^(-k/d) - (1-x^d)^(-1)*(1-x^(2*d))^(-((k/d) - 1)/2)).
The latter g.f. agrees with Herbert Kociemba's formula found in the documentations of sequences and A008804 and A032246 only when k is an odd prime. The reason is that (DHK[k] c)_n, with c=(1,1,1,...), is the number of aperiodic bracelets without reflection symmetry with k black beads and n-k white beads, while Herbert Kociemba's formula (in the documentations of sequences and A008804 and A032246) counts all (periodic and aperiodic) bracelets without reflection symmetry with k black beads and n-k white beads. Hence, in the case k is an odd prime, the two formulas agree.
When k is even, the g.f. of the DHK[k] transform of sequence c = (c(n): n >= 1) is much more complicated.
Note that Herbert Kociemba's formula for counting all (periodic and aperiodic) bracelets with no reflection symmetry is still valid even when k is even; e.g., see sequence A008804 for the case k=4. For k = 4, all bracelets with 4 black beads and n-k = n-4 white beads that have no reflection symmetry are aperiodic, but this is not true anymore for k even >= 6.
(End)
FORMULA
G.f.: x^7*(1/(14*(1 - x)^7) - 1/((2*(1 - x))*(1 - x^2)^3) + 3/(7*(1 - x^7))). - Petros Hadjicostas, Feb 24 2019
a(n) = 3*a(n-1) - 8*a(n-3) + 6*a(n-4) + 6*a(n-5) - 8*a(n-6) + a(n-7) - a(n-9) + 8*a(n-10) - 6*a(n-11) - 6*a(n-12) + 8*a(n-13) - 3*a(n-15) + a(n-16) for n>25. - Colin Barker, Feb 25 2019
MATHEMATICA
LinearRecurrence[{3, 0, -8, 6, 6, -8, 1, 0, -1, 8, -6, -6, 8, 0, -3, 1}, {4, 10, 28, 56, 113, 197, 340, 544, 856, 1284, 1896, 2709, 3816, 5247, 7128, 9504}, 40] (* Harvey P. Dale, Jul 08 2024 *)
PROG
(PARI) Vec(x^10*(4 - 2*x - 2*x^2 + 4*x^3 + x^4 - 2*x^5 + x^6) / ((1 - x)^7*(1 + x)^3*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)) + O(x^40)) \\ Colin Barker, Feb 25 2019
CROSSREFS
Cf. A001399, A008804, A032246, A032247, A032250. Column k = 7 of A180472.
Sequence in context: A333172 A257028 A174938 * A092504 A340568 A038579
KEYWORD
nonn,easy
STATUS
approved