OFFSET
1,3
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..500
C. G. Bower, Transforms (2)
FORMULA
"DIK" (bracelet, indistinct, unlabeled) transform of 1, 0, 1, 0, ... (odds)
G.f.: (x*(1 + x - x^4)/((1 - x)*(1 + x)*(1 - x^2 - x^4)) + Sum_{d>0} phi(d)*log((1 - x^(2*d))/(1 - x^d - x^(2*d)))/d)/2. - Andrew Howroyd, Jun 20 2018
PROG
(PARI) seq(n)={Vec(x*(1 + x - x^4)/((1 - x)*(1 + x)*(1 - x^2 - x^4)) + sum(d=1, n, eulerphi(d)/d*log((1-x^(2*d))/(1-x^d-x^(2*d)) + O(x*x^n))))/2} \\ Andrew Howroyd, Jun 20 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved