login
A011795
a(n) = floor(C(n,4)/5).
8
0, 0, 0, 0, 0, 1, 3, 7, 14, 25, 42, 66, 99, 143, 200, 273, 364, 476, 612, 775, 969, 1197, 1463, 1771, 2125, 2530, 2990, 3510, 4095, 4750, 5481, 6293, 7192, 8184, 9275, 10472, 11781, 13209, 14763, 16450, 18278, 20254, 22386, 24682, 27150, 29799, 32637, 35673, 38916, 42375, 46060, 49980, 54145, 58565, 63250, 68211, 73458, 79002, 84854, 91025, 97527, 104371
OFFSET
0,7
COMMENTS
a(n-1) = number of aperiodic necklaces (Lyndon words) with 5 black beads and n-5 white beads.
REFERENCES
J. M. Borwein, D. H. Bailey and R. Girgensohn, Experimentation in Mathematics, A K Peters, Ltd., Natick, MA, 2004. x+357 pp. See p. 147.
FORMULA
G.f.: x^5*(1+x^3)/((1-x)^3*(1-x^2)*(1-x^5)) = x^5*(1-x+x^2)/((1-x)^5*(1+x+x^2+x^3+x^4)).
a(n) = floor(binomial(n+1,5)/(n+1)). - Gary Detlefs, Nov 23 2011
MAPLE
seq(floor(binomial(n, 4)/5), n=0.. 70); # Zerinvary Lajos, Jan 12 2009
MATHEMATICA
CoefficientList[Series[x^5(1+x^3)/((1-x)^3(1-x^2)(1-x^5)), {x, 0, 70}], x] (* Vincenzo Librandi, Jun 19 2012 *)
CoefficientList[Series[x^4/5 (1/(1-x)^5-1/(1- x^5)), {x, 0, 70}], x] (* Herbert Kociemba, Oct 16 2016 *)
PROG
(Magma) [Floor(Binomial(n+1, 5)/(n+1)): n in [0..70]]; // Vincenzo Librandi Jun 19 2012
(PARI) a(n)=binomial(n, 4)\5 \\ Charles R Greathouse IV, Oct 07 2015
(SageMath) [binomial(n, 4)//5 for n in range(71)] # G. C. Greubel, Oct 20 2024
CROSSREFS
Same as A051170(n+1).
A column of triangle A011847.
Sequence in context: A057524 A293467 A051170 * A265252 A193911 A206417
KEYWORD
nonn,easy
STATUS
approved