login
A304455
Number of steps in the reduction to a multiset of size 1 of the multiset of prime factors of n, obtained by repeatedly taking the multiset of multiplicities.
9
0, 0, 0, 1, 0, 2, 0, 1, 1, 2, 0, 3, 0, 2, 2, 1, 0, 3, 0, 3, 2, 2, 0, 3, 1, 2, 1, 3, 0, 2, 0, 1, 2, 2, 2, 2, 0, 2, 2, 3, 0, 2, 0, 3, 3, 2, 0, 3, 1, 3, 2, 3, 0, 3, 2, 3, 2, 2, 0, 4, 0, 2, 3, 1, 2, 2, 0, 3, 2, 2, 0, 3, 0, 2, 3, 3, 2, 2, 0, 3, 1, 2, 0, 4, 2, 2, 2, 3, 0, 4, 2, 3, 2, 2, 2, 3, 0, 3, 3, 2, 0, 2, 0, 3, 2
OFFSET
1,6
FORMULA
For n > 2, a(n) = A182850(n) - 1.
a(prime(n)) = 0.
a(A246547(n)) = 1.
EXAMPLE
The a(2520) = 5 steps are {2,2,2,3,3,5,7} -> {1,1,2,3} -> {1,1,2} -> {1,2} -> {1,1} -> {2}.
MATHEMATICA
Table[Length[Select[FixedPointList[Sort[Length/@Split[#]]&, If[n===1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[p, {k}]]]]], Length[#]>1&]], {n, 100}]
PROG
(PARI)
A181819(n) = factorback(apply(e->prime(e), (factor(n)[, 2])));
A304455(n) = if(n<=2, 0, n=A181819(n); if(2==n, 0, 1+A304455(n))); \\ Antti Karttunen, Dec 06 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 12 2018
EXTENSIONS
More terms from Antti Karttunen, Dec 06 2018
STATUS
approved