login
A246547
Prime powers p^e where p is a prime and e >= 2 (prime powers without the primes or 1).
107
4, 8, 9, 16, 25, 27, 32, 49, 64, 81, 121, 125, 128, 169, 243, 256, 289, 343, 361, 512, 529, 625, 729, 841, 961, 1024, 1331, 1369, 1681, 1849, 2048, 2187, 2197, 2209, 2401, 2809, 3125, 3481, 3721, 4096, 4489, 4913, 5041, 5329, 6241, 6561, 6859, 6889, 7921, 8192, 9409, 10201, 10609, 11449, 11881, 12167, 12769, 14641
OFFSET
1,1
COMMENTS
These are sometimes called the proper prime powers.
A proper subset of A001597.
Equals A000961 \ A008578 = { x in A001597 | A001221(x)=1 }. - M. F. Hasler, Aug 29 2014
LINKS
Chai Wah Wu, Algorithms for complementary sequences, arXiv:2409.05844 [math.NT], 2024.
FORMULA
a(n) = A025475(n+1). - M. F. Hasler, Aug 29 2014
Sum_{n>=1} 1/a(n) = Sum_{p prime} 1/(p*(p-1)) = A136141. - Amiram Eldar, Dec 21 2020
MAPLE
isA246547 := proc(n)
local ifs;
ifs := ifactors(n)[2] ;
if nops(ifs) <> 1 then
false;
else
is(op(2, op(1, ifs)) > 1);
end if;
end proc:
for n from 2 do
if isA246547(n) then
print(n) ;
end if;
end do: # R. J. Mathar, Feb 01 2016 # Or:
isA246547 := n -> not isprime(n) and nops(numtheory:-factorset(n)) = 1:
select(isA246547, [$1..10000]); # Peter Luschny, May 01 2018
MATHEMATICA
With[{upto=15000}, Complement[Select[Range[upto], PrimePowerQ], Prime[ Range[ PrimePi[ upto]]]]] (* Harvey P. Dale, Nov 28 2014 *)
Select[ Range@ 15000, PrimePowerQ@# && !SquareFreeQ@# &] (* Robert G. Wilson v, Dec 01 2014 *)
With[{n = 15000}, Union@ Flatten@ Table[Array[p^# &, Floor@ Log[p, n] - 1, 2], {p, Prime@ Range@ PrimePi@ Sqrt@ n}] ] (* Michael De Vlieger, Jul 06 2018, faster program *)
PROG
(PARI) for(n=1, 10^5, if(isprimepower(n)>=2, print1(n, ", ")));
(PARI) m=10^5; v=[]; forprime(p=2, sqrtint(m), e=2; while(p^e<=m, v=concat(v, p^e); e++)); v=vecsort(v) \\ Faster program. Jens Kruse Andersen, Aug 29 2014
(SageMath)
def A246547List(n):
return [p for p in srange(2, n) if p.is_prime_power() and not p.is_prime()]
print(A246547List(14642)) # Peter Luschny, Sep 16 2023
(Python)
from sympy import primepi, integer_nthroot
def A246547(n):
def f(x): return int(n-1+x-sum(primepi(integer_nthroot(x, k)[0]) for k in range(2, x.bit_length())))
kmin, kmax = 1, 2
while f(kmax) >= kmax:
kmax <<= 1
while True:
kmid = kmax+kmin>>1
if f(kmid) < kmid:
kmax = kmid
else:
kmin = kmid
if kmax-kmin <= 1:
break
return kmax # Chai Wah Wu, Aug 14 2024
CROSSREFS
Essentially the same as A025475.
There are four different sequences which may legitimately be called "prime powers": A000961 (p^k, k >= 0), A246655 (p^k, k >= 1), A246547 (p^k, k >= 2), A025475 (p^k, k=0 and k >= 2). When you refer to "prime powers", be sure to specify which of these you mean. Also A001597 is the sequence of nontrivial powers n^k, n >= 1, k >= 2. - N. J. A. Sloane, Mar 24 2018
Sequence in context: A134611 A134612 A025475 * A195942 A125643 A002760
KEYWORD
nonn,easy
AUTHOR
Joerg Arndt, Aug 29 2014
STATUS
approved