login
A304452
Solution (b(n)) of the complementary equation in Comments.
2
1, 3, 5, 6, 7, 10, 11, 13, 14, 16, 18, 20, 22, 24, 25, 26, 27, 29, 31, 32, 34, 36, 37, 40, 42, 44, 45, 46, 49, 50, 51, 53, 55, 56, 58, 59, 61, 62, 63, 65, 67, 68, 71, 72, 73, 76, 78, 80, 81, 84, 85, 86, 89, 90, 91, 94, 96, 98, 99, 100, 103, 104, 105, 106
OFFSET
0,2
COMMENTS
Define sequences a(n) and b(n) recursively, starting with b(0) = 1:
b(n) = least new;
a(n) = b(n) + b(floor(n/2)),
where "least new k" means the least positive integer not yet placed.
***
Conjectures: a(n)/n -> 5/2 and -1 <= 5/2 - a(n)/n <= 2 for n >= 1;
b(n)/n -> 5/3 and -1 <= 5/3 - b(n)/n <= 2 for n >= 1.
EXAMPLE
a(0) = b(0) + b(0) = 2;
a(1) = b(1) + b(2) >= 3 + 4, so that b(2) = 3, b(2) = 4, b(3) = 5, b(4) = 6, and a(1) = 7.
MATHEMATICA
mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]);
z = 1000; a = {}; b = {1};
Do[AppendTo[a, Last[b] + b[[Floor[(1 + Length[b])/2]]]];
AppendTo[b, mex[Flatten[{a, b}], 1]], {z}];
Take[a, 100] (* A304451 *)
Take[b, 100] (* A304452 *)
(* Peter J. C. Moses, May 10 2018 *)
CROSSREFS
Cf. A304451.
Sequence in context: A336353 A182851 A281995 * A292763 A176175 A157201
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 16 2018
STATUS
approved