login

Revision History for A304455

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Number of steps in the reduction to a multiset of size 1 of the multiset of prime factors of n, obtained by repeatedly taking the multiset of multiplicities.
(history; published version)
#17 by Susanna Cuyler at Thu Dec 06 16:33:30 EST 2018
STATUS

proposed

approved

#16 by Antti Karttunen at Thu Dec 06 13:53:28 EST 2018
STATUS

editing

proposed

#15 by Antti Karttunen at Thu Dec 06 10:18:08 EST 2018
LINKS

<a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>

#14 by Antti Karttunen at Thu Dec 06 10:16:28 EST 2018
LINKS

Antti Karttunen, <a href="/A304455/b304455.txt">Table of n, a(n) for n = 1..20000</a>

#13 by Antti Karttunen at Thu Dec 06 10:12:35 EST 2018
FORMULA

a(A000961A246547(n)) = 1.

#12 by Antti Karttunen at Thu Dec 06 10:10:24 EST 2018
LINKS

Antti Karttunen, <a href="/A304455/a304455.txt">Data supplement: n, a(n) computed for n = 1..100000</a>

FORMULA

a(prime(n > 1)) = 0.

#11 by Antti Karttunen at Thu Dec 06 10:06:23 EST 2018
DATA

0, 0, 0, 1, 0, 2, 0, 1, 1, 2, 0, 3, 0, 2, 2, 1, 0, 3, 0, 3, 2, 2, 0, 3, 1, 2, 1, 3, 0, 2, 0, 1, 2, 2, 2, 2, 0, 2, 2, 3, 0, 2, 0, 3, 3, 2, 0, 3, 1, 3, 2, 3, 0, 3, 2, 3, 2, 2, 0, 4, 0, 2, 3, 1, 2, 2, 0, 3, 2, 2, 0, 3, 0, 2, 3, 3, 2, 2, 0, 3, 1, 2, 0, 4, 2, 2, 2, 3, 0, 4, 2, 3, 2, 2, 2, 3, 0, 3, 3, 2, 0, 2, 0, 3, 2

PROG

(PARI)

A181819(n) = factorback(apply(e->prime(e), (factor(n)[, 2])));

A304455(n) = if(n<=2, 0, n=A181819(n); if(2==n, 0, 1+A304455(n))); \\ Antti Karttunen, Dec 06 2018

EXTENSIONS

More terms from Antti Karttunen, Dec 06 2018

STATUS

approved

editing

#10 by Susanna Cuyler at Mon May 14 20:21:39 EDT 2018
STATUS

proposed

approved

#9 by Gus Wiseman at Sun May 13 09:41:31 EDT 2018
STATUS

editing

proposed

#8 by Gus Wiseman at Sun May 13 09:40:16 EDT 2018
EXAMPLE

The a(2520) = 5 steps are {1,1,1,2,2,2,3,3,45,7} -> {1,1,2,3} -> {1,1,2} -> {1,2} -> {1,1} -> {2}.

MATHEMATICA

Table[Length[Select[FixedPointList[Sort[Length/@Split[#]]&, If[n===1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], , {k}]]]]], Length[#]>1&]], {n, 100}]