OFFSET
1,4
COMMENTS
a(1) = 0 by convention.
a(n) depends only on prime signature of n (cf. A025487). - Antti Karttunen, Nov 08 2018
LINKS
FORMULA
a(p^n) = n where p is any prime number.
a(product of n distinct primes) = n.
a(1) = 0; and for n > 1, if n = prime^k, a(n) = k, otherwise, if n is squarefree [i.e., A001221(n) = A001222(n)], a(n) = A001221(n), otherwise a(n) = a(A181819(n)). - Antti Karttunen, Nov 08 2018
EXAMPLE
Starting with the multiset of prime factors of 2520 we have {2,2,2,3,3,5,7} -> {1,1,2,3} -> {1,1,2} -> {1,2} -> {1,1} -> {2}, so a(2520) = 2.
MATHEMATICA
Table[Switch[n, 1, 0, _?PrimeQ, 1, _, NestWhile[Sort[Length/@Split[#]]&, Sort[Last/@FactorInteger[n]], Length[#]>1&]//First], {n, 100}]
PROG
(PARI)
A181819(n) = factorback(apply(e->prime(e), (factor(n)[, 2])));
A304465(n) = if(1==n, 0, my(t=isprimepower(n)); if(t, t, t=omega(n); if(bigomega(n)==t), t, A304465(A181819(n)))); \\ Antti Karttunen, Nov 08 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 13 2018
EXTENSIONS
More terms from Antti Karttunen, Nov 08 2018
STATUS
approved