login
A304465
If n is prime, set a(n) = 1. Otherwise, start with the multiset of prime factors of n, and given a multiset take the multiset of its multiplicities. Repeating this until a multiset of size 1 is reached, set a(n) to the unique element of this multiset.
52
0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 2, 1, 2, 2, 4, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 3, 2, 1, 3, 1, 5, 2, 2, 2, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 2, 6, 2, 3, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 2, 3, 1, 2, 4, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 3, 1, 2, 3
OFFSET
1,4
COMMENTS
a(1) = 0 by convention.
a(n) depends only on prime signature of n (cf. A025487). - Antti Karttunen, Nov 08 2018
FORMULA
a(p^n) = n where p is any prime number.
a(product of n distinct primes) = n.
a(1) = 0; and for n > 1, if n = prime^k, a(n) = k, otherwise, if n is squarefree [i.e., A001221(n) = A001222(n)], a(n) = A001221(n), otherwise a(n) = a(A181819(n)). - Antti Karttunen, Nov 08 2018
EXAMPLE
Starting with the multiset of prime factors of 2520 we have {2,2,2,3,3,5,7} -> {1,1,2,3} -> {1,1,2} -> {1,2} -> {1,1} -> {2}, so a(2520) = 2.
MATHEMATICA
Table[Switch[n, 1, 0, _?PrimeQ, 1, _, NestWhile[Sort[Length/@Split[#]]&, Sort[Last/@FactorInteger[n]], Length[#]>1&]//First], {n, 100}]
PROG
(PARI)
A181819(n) = factorback(apply(e->prime(e), (factor(n)[, 2])));
A304465(n) = if(1==n, 0, my(t=isprimepower(n)); if(t, t, t=omega(n); if(bigomega(n)==t), t, A304465(A181819(n)))); \\ Antti Karttunen, Nov 08 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 13 2018
EXTENSIONS
More terms from Antti Karttunen, Nov 08 2018
STATUS
approved