login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A093657
2^(n-1)-th term of the row sums of triangle A093654.
3
1, 2, 6, 28, 206, 2418, 45970, 1440746, 75840096, 6828414424, 1069361760254, 295609883371824, 146078092162147126, 130419475982163166640, 212257994312591826735888, 634463537260289571176650942
OFFSET
1,2
LINKS
FORMULA
a(n) = A093656(2^(n-1)) for n>=1.
a(n) = Sum_{k=0..n} A097710(n,k), row sums of triangle A097710.
MATHEMATICA
T[n_, k_]:= T[n, k]= If[n<0 || k>n, 0, If[n==k, 1, If[k==0, Sum[T[n-1, j]*T[j, 0], {j, 0, n-1}], Sum[T[n-1, j]*(T[j, k-1]+T[j, k]), {j, 0, n-1}] ]]]; (* T = A097710 *)
A093657[n_]:= A093657[n]= Sum[T[n, k], {k, 0, n}];
Table[A093657[n], {n, 0, 30}] (* G. C. Greubel, Feb 21 2024 *)
PROG
(SageMath)
@CachedFunction
def T(n, k): # T = A097710
if n< 0 or k<0 or k>n: return 0
elif k==n: return 1
elif k==0: return sum(T(n-1, j)*T(j, 0) for j in range(n))
else: return sum(T(n-1, j)*(T(j, k-1)+T(j, k)) for j in range(n))
def A093657(n): return sum(T(n, k) for k in range(n+1))
[A093657(n) for n in range(31)] # G. C. Greubel, Feb 21 2024
CROSSREFS
Related to the number of tournament sequences (A008934).
Sequence in context: A324126 A272662 A125812 * A355064 A305627 A006117
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 08 2004
STATUS
approved