login
A093654
Lower triangular matrix, read by rows, defined as the convergent of the concatenation of matrices using the iteration: M(n+1) = [[M(n),0*M(n)],[M(n)^2,M(n)^2]], with M(0) = [1].
6
1, 1, 1, 1, 0, 1, 2, 1, 2, 1, 1, 0, 0, 0, 1, 2, 1, 0, 0, 2, 1, 2, 0, 1, 0, 2, 0, 1, 7, 2, 4, 1, 7, 2, 4, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 2, 1, 2, 0, 1, 0, 0, 0, 0, 0, 2, 0, 1, 7, 2, 4, 1, 0, 0, 0, 0, 7, 2, 4, 1, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 7, 2, 0, 0, 4, 1, 0, 0, 7, 2, 0, 0, 4, 1
OFFSET
1,7
COMMENTS
Related to the number of tournament sequences (A008934). First column forms A093655, where A093655(2^n) = A008934(n) for n>=0. Row sums form A093656, where A093656(2^(n-1)) = A093657(n) for n>=1.
FORMULA
First column: T(2^n, 1) = A008934(n) for n>=0.
EXAMPLE
Let M(n) be the lower triangular matrix formed from the first 2^n rows.
To generate M(3) from M(2), take the matrix square of M(2):
[1,0,0,0]^2=[1,0,0,0]
[1,1,0,0]...[2,1,0,0]
[1,0,1,0]...[2,0,1,0]
[2,1,2,1]...[7,2,4,1]
and append M(2)^2 to the bottom left and bottom right of M(2):
[1],
[1,1],
[1,0,1],
[2,1,2,1],
.........
[1,0,0,0],[1],
[2,1,0,0],[2,1],
[2,0,1,0],[2,0,1],
[7,2,4,1],[7,2,4,1].
Repeating this process converges to triangle A093654.
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Apr 08 2004
STATUS
approved