login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

2^(n-1)-th term of the row sums of triangle A093654.
3

%I #11 Feb 22 2024 20:22:43

%S 1,2,6,28,206,2418,45970,1440746,75840096,6828414424,1069361760254,

%T 295609883371824,146078092162147126,130419475982163166640,

%U 212257994312591826735888,634463537260289571176650942

%N 2^(n-1)-th term of the row sums of triangle A093654.

%H G. C. Greubel, <a href="/A093657/b093657.txt">Table of n, a(n) for n = 1..86</a>

%F a(n) = A093656(2^(n-1)) for n>=1.

%F a(n) = Sum_{k=0..n} A097710(n,k), row sums of triangle A097710.

%t T[n_, k_]:= T[n,k]= If[n<0 || k>n, 0, If[n==k, 1, If[k==0, Sum[T[n-1,j]*T[j,0], {j,0,n-1}], Sum[T[n-1,j]*(T[j,k-1]+T[j,k]), {j,0,n-1}] ]]]; (* T = A097710 *)

%t A093657[n_]:= A093657[n]= Sum[T[n,k], {k,0,n}];

%t Table[A093657[n], {n,0,30}] (* _G. C. Greubel_, Feb 21 2024 *)

%o (SageMath)

%o @CachedFunction

%o def T(n, k): # T = A097710

%o if n< 0 or k<0 or k>n: return 0

%o elif k==n: return 1

%o elif k==0: return sum(T(n-1,j)*T(j,0) for j in range(n))

%o else: return sum(T(n-1, j)*(T(j, k-1)+T(j,k)) for j in range(n))

%o def A093657(n): return sum(T(n,k) for k in range(n+1))

%o [A093657(n) for n in range(31)] # _G. C. Greubel_, Feb 21 2024

%Y Cf. A093654, A093656.

%Y Related to the number of tournament sequences (A008934).

%Y Cf. A097710, A008934.

%K nonn

%O 1,2

%A _Paul D. Hanna_, Apr 08 2004