login
A093655
First column of lower triangular matrix A093654.
5
1, 1, 1, 2, 1, 2, 2, 7, 1, 2, 2, 7, 2, 7, 7, 41, 1, 2, 2, 7, 2, 7, 7, 41, 2, 7, 7, 41, 7, 41, 41, 397, 1, 2, 2, 7, 2, 7, 7, 41, 2, 7, 7, 41, 7, 41, 41, 397, 2, 7, 7, 41, 7, 41, 41, 397, 7, 41, 41, 397, 41, 397, 397, 6377
OFFSET
1,4
COMMENTS
Related to the number of tournament sequences (A008934).
a(n) equals the number of tournament sequences (A008934) of length A000120(n-1), which is the number of 1's in the binary expansion of n-1.
FORMULA
a(2^n) = A008934(n) for n>=0.
a(n) = A008934(A000120(n-1)) for n>=1.
CROSSREFS
Cf. A000120.
Sequence in context: A081727 A000020 A077014 * A023140 A145859 A145863
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 08 2004
STATUS
approved