login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355064
Expansion of e.g.f. ( Product_{k>0} 1/(1-x^k)^(1/k) )^x.
5
1, 0, 2, 6, 28, 210, 1248, 13020, 102128, 1248912, 13457880, 176726880, 2362784928, 36609693120, 551337892896, 9588702417840, 171779733546240, 3230529997766400, 64714946343904512, 1371420774325866240, 29953522454811096960, 698447624328756610560
OFFSET
0,3
LINKS
FORMULA
a(0) = 1, a(1) = 0; a(n) = Sum_{k=2..n} k! * sigma_0(k-1)/(k-1) * binomial(n-1,k-1) * a(n-k).
MATHEMATICA
a[0] := a[0] = 1; a[1] := a[1] = 0;
a[n_] := a[n] = Sum[Factorial[k]*DivisorSigma[0, k - 1]/(k - 1)*Binomial[n - 1, k - 1]* a[n - k], {k, 2, n}];
Table[a[n], {n, 0, 50}] (* Sidney Cadot, Jan 05 2023 *)
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/prod(k=1, N, (1-x^k)^(1/k))^x))
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=2, i, j!*sigma(j-1, 0)/(j-1)*binomial(i-1, j-1)*v[i-j+1])); v;
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 12 2022
STATUS
approved