login
A048250
Sum of the squarefree divisors of n.
144
1, 3, 4, 3, 6, 12, 8, 3, 4, 18, 12, 12, 14, 24, 24, 3, 18, 12, 20, 18, 32, 36, 24, 12, 6, 42, 4, 24, 30, 72, 32, 3, 48, 54, 48, 12, 38, 60, 56, 18, 42, 96, 44, 36, 24, 72, 48, 12, 8, 18, 72, 42, 54, 12, 72, 24, 80, 90, 60, 72, 62, 96, 32, 3, 84, 144, 68, 54, 96, 144, 72, 12, 74
OFFSET
1,2
COMMENTS
Also sum of divisors of the squarefree kernel of n: a(n) = A000203(A007947(n)). - Reinhard Zumkeller, Jul 19 2002
The absolute values of the Dirichlet inverse of A001615. - R. J. Mathar, Dec 22 2010
Row sums of the triangle in A206778. - Reinhard Zumkeller, Feb 12 2012
Inverse Möbius transform of n * mu(n)^2 = |A055615(n)|. - Wesley Ivan Hurt, Jun 08 2023
REFERENCES
D. Suryanarayana, On the core of an integer, Indian J. Math. 14 (1972) 65-74.
LINKS
Steven R. Finch, Unitarism and infinitarism.
Steven R. Finch, Unitarism and Infinitarism, February 25, 2004. [Cached copy, with permission of the author]
FORMULA
If n = Product p_i^e_i, a(n) = Product (p_i + 1). - Vladeta Jovovic, Apr 19 2001
Dirichlet g.f.: zeta(s)*zeta(s-1)/zeta(2*s-2). - Michael Somos, Sep 08 2002
a(n) = Sum_{d|n} mu(d)^2*d = Sum_{d|n} |A055615(d)|. - Benoit Cloitre, Dec 09 2002
Pieter Moree (moree(AT)mpim-bonn.mpg.de), Feb 20 2004 can show that Sum_{n <= x} a(n) = x^2/2 + O(x*sqrt{x}) and adds: "As S. R. Finch pointed out to me, in Suryanarayana's paper this is proved under the Riemann hypothesis with error term O(x^{7/5+epsilon})".
a(n) = psi(rad(n)) = A001615(A007947(n)). - Enrique Pérez Herrero, Aug 24 2010
a(n) = rad(n)*psi(n)/n = A001615(n)*A007947(n)/n. - Enrique Pérez Herrero, Aug 31 2010
G.f.: Sum_{k>=1} mu(k)^2*k*x^k/(1 - x^k). - Ilya Gutkovskiy, Jan 03 2017
Lim_{n->oo} (1/n) * Sum_{k=1..n} a(k)/k = 1. - Amiram Eldar, Jun 10 2020
a(n) = Sum_{d divides n} mu(d)^2*core(d), where core(n) = A007913(n). - Peter Bala, Jan 24 2024
EXAMPLE
For n=1000, out of the 16 divisors, four are squarefree: {1,2,5,10}. Their sum is 18. Or, 1000 = 2^3*5^3 hence a(1000) = (2+1)*(5+1) = 18.
MAPLE
A048250 := proc(n) local ans, i:ans := 1: for i from 1 to nops(ifactors(n)[ 2 ]) do ans := ans*(1+ifactors(n)[ 2 ][ i ] [ 1 ]): od: RETURN(ans) end:
# alternative:
seq(mul(1+p, p = numtheory:-factorset(n)), n=1..1000); # Robert Israel, Mar 18 2015
MATHEMATICA
sumOfSquareFreeDivisors[ n_ ] := Plus @@ Select[ Divisors[ n ], MoebiusMu[ # ] != 0 & ]; Table[ sumOfSquareFreeDivisors[ i ], {i, 85} ]
Table[Total[Select[Divisors[n], SquareFreeQ]], {n, 80}] (* Harvey P. Dale, Jan 25 2013 *)
a[1] = 1; a[n_] := Times@@(1 + FactorInteger[n][[;; , 1]]); Array[a, 100] (* Amiram Eldar, Dec 19 2018 *)
PROG
(PARI) a(n)=if(n<1, 0, sumdiv(n, d, if(core(d)==d, d)))
(PARI) a(n)=if(n<1, 0, direuler(p=2, n, (1+p*X)/(1-X))[n])
(PARI) a(n)=sumdiv(n, d, moebius(d)^2*d); \\ Joerg Arndt, Jul 06 2011
(PARI) a(n)=my(f=factor(n)); for(i=1, #f~, f[i, 2]=1); sigma(f) \\ Charles R Greathouse IV, Sep 09 2014
(Haskell)
a034448 = sum . a206778_row -- Reinhard Zumkeller, Feb 12 2012
(Sage)
def A048250(n): return mul(map(lambda p: p+1, prime_divisors(n)))
[A048250(n) for n in (1..73)] # Peter Luschny, May 23 2013
(Python)
from math import prod
from sympy import primefactors
def A048250(n): return prod(p+1 for p in primefactors(n)) # Chai Wah Wu, Apr 20 2023
CROSSREFS
Sum of the k-th powers of the squarefree divisors of n for k=0..10: A034444 (k=0), this sequence (k=1), A351265 (k=2), A351266 (k=3), A351267 (k=4), A351268 (k=5), A351269 (k=6), A351270 (k=7), A351271 (k=8), A351272 (k=9), A351273 (k=10).
Cf. A240976 (tenth of Dgf at s=3).
Sequence in context: A324335 A238162 A367503 * A323363 A073181 A183100
KEYWORD
nonn,easy,nice,mult
AUTHOR
STATUS
approved