login
A367503
Sum of the final digits of the squarefree divisors of n.
2
1, 3, 4, 3, 6, 12, 8, 3, 4, 8, 2, 12, 4, 14, 14, 3, 8, 12, 10, 8, 12, 6, 4, 12, 6, 12, 4, 14, 10, 22, 2, 3, 8, 14, 18, 12, 8, 20, 16, 8, 2, 26, 4, 6, 14, 12, 8, 12, 8, 8, 12, 12, 4, 12, 12, 14, 20, 20, 10, 22, 2, 6, 12, 3, 14, 24, 8, 14, 16, 24, 2, 12, 4, 14, 14, 20
OFFSET
1,2
COMMENTS
Inverse Möbius transform of mu(n)^2 * (n mod 10). - Wesley Ivan Hurt, Jun 21 2024
LINKS
FORMULA
a(n) = Sum_{d|n} mu(d)^2 * (d mod 10).
EXAMPLE
a(10) = 8. The squarefree divisors of 10 are 1, 2, 5, 10 and the sum of their final digits is 1 + 2 + 5 + 0 = 8.
MAPLE
f:= proc(n) local t; add(t mod 10, t = map(convert, combinat:-powerset(numtheory:-factorset(n)), `*`)) end proc:
map(f, [$1..100]); # Robert Israel, Nov 21 2023
MATHEMATICA
Table[DivisorSum[n, MoebiusMu[#]^2*Mod[#, 10] &], {n, 100}]
PROG
(PARI) a(n) = sumdiv(n, d, if (issquarefree(d), d%10)); \\ Michel Marcus, Nov 21 2023
CROSSREFS
Cf. A005117 (squarefree numbers), A010879 (final digit of n), A367466 (sum of the final digits of the divisors of n), A371925 (numbers that occur in this sequence).
Sequence in context: A218789 A324335 A238162 * A048250 A323363 A073181
KEYWORD
nonn,easy,base
AUTHOR
Wesley Ivan Hurt, Nov 20 2023
STATUS
approved