OFFSET
1,2
COMMENTS
Row sums of the triangle in A077610. - Reinhard Zumkeller, Feb 12 2002
Multiplicative with a(p^e) = p^e+1 for e>0. - Franklin T. Adams-Watters, Sep 11 2005
LINKS
T. D. Noe, Table of n, a(n) for n = 1..10000
Octavio A. Agustín-Aquino, Prime injections and quasipolarities, Matematiche 69 (2014) 159-168
Steven R. Finch, Unitarism and Infinitarism, February 25, 2004. [Cached copy, with permission of the author]
Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 50.
Carl Pomerance and Hee-Sung Yang, Variant of a theorem of Erdős on the sum-of-proper-divisors function, Math. Comp., to appear (2014).
Tim Trudgian, The sum of the unitary divisor function, Publications de l'Institut Mathématique 2015 Vol. 97, Issue 111, pp. 175-180.
Eric Weisstein's World of Mathematics, Unitary Divisor Function
Wikipedia, Unitary divisor
FORMULA
If n = Product p_i^e_i, usigma(n) = Product (p_i^e_i + 1). - Vladeta Jovovic, Apr 19 2001
Dirichlet generating function: zeta(s)*zeta(s-1)/zeta(2s-1). - Franklin T. Adams-Watters, Sep 11 2005
Conjecture: a(n) = sigma(n^2/rad(n))/sigma(n/rad(n)), where sigma = A000203 and rad = A007947. - Velin Yanev, Aug 20 2017
This conjecture is easily verified since all the functions involved are multiplicative and proving it for prime powers is straightforward. - Juan José Alba González, Mar 19 2021
From Amiram Eldar, May 29 2020: (Start)
Sum_{d|n, gcd(d, n/d) = 1} a(d) * (-1)^omega(n/d) = n.
Sum_{k=1..n} a(k) ~ Pi^2 * n^2 / (12*zeta(3)). - Vaclav Kotesovec, May 20 2021
a(n) = uphi(n^2)/uphi(n) = A191414(n)/uphi(n), where uphi(n) = A047994(n). - Amiram Eldar, Sep 21 2024
EXAMPLE
Unitary divisors of 12 are 1, 3, 4, 12. Or, 12=3*2^2 hence usigma(12)=(3+1)*(2^2+1)=20.
MAPLE
A034448 := proc(n) local ans, i:ans := 1: for i from 1 to nops(ifactors(n)[ 2 ]) do ans := ans*(1+ifactors(n)[ 2 ][ i ][ 1 ]^ifactors(n)[ 2 ] [ i ] [ 2 ]): od: RETURN(ans) end:
a := proc(n) local i; numtheory[divisors](n); select(d -> igcd(d, n/d)=1, %); add(i, i=%) end; # Peter Luschny, May 03 2009
MATHEMATICA
usigma[n_] := Block[{d = Divisors[n]}, Plus @@ Select[d, GCD[ #, n/# ] == 1 &]]; Table[ usigma[n], {n, 71}] (* Robert G. Wilson v, Aug 28 2004 *)
Table[DivisorSum[n, # &, CoprimeQ[#, n/#] &], {n, 70}] (* Michael De Vlieger, Mar 01 2017 *)
usigma[n_] := If[n == 1, 1, Times @@ (1 + Power @@@ FactorInteger[n])]; Array[usigma, 100] (* faster since avoids generating divisors, Giovanni Resta, Apr 23 2017 *)
PROG
(PARI) A034448(n)=sumdiv(n, d, if(gcd(d, n/d)==1, d)) \\ Rick L. Shepherd
(PARI) A034448(n) = {my(f=factorint(n)); prod(k=1, #f[, 2], f[k, 1]^f[k, 2]+1)} \\ Andrew Lelechenko, Apr 22 2014
(PARI) a(n)=sumdivmult(n, d, if(gcd(d, n/d)==1, d)) \\ Charles R Greathouse IV, Sep 09 2014
(Haskell) a034448 = sum . a077610_row -- Reinhard Zumkeller, Feb 12 2012
(Python 3.8+)
from math import prod
from sympy import factorint
def A034448(n): return prod(p**e+1 for p, e in factorint(n).items()) # Chai Wah Wu, Jun 20 2021
CROSSREFS
KEYWORD
nonn,easy,nice,mult
AUTHOR
N. J. A. Sloane, Dec 11 1999
EXTENSIONS
More terms from Erich Friedman
STATUS
approved