login
A351266
Sum of the cubes of the squarefree divisors of n.
11
1, 9, 28, 9, 126, 252, 344, 9, 28, 1134, 1332, 252, 2198, 3096, 3528, 9, 4914, 252, 6860, 1134, 9632, 11988, 12168, 252, 126, 19782, 28, 3096, 24390, 31752, 29792, 9, 37296, 44226, 43344, 252, 50654, 61740, 61544, 1134, 68922, 86688, 79508, 11988, 3528, 109512, 103824
OFFSET
1,2
COMMENTS
Inverse Möbius transform of n^3 * mu(n)^2. - Wesley Ivan Hurt, Jun 08 2023
LINKS
N. J. A. Sloane, Transforms.
FORMULA
a(n) = Sum_{d|n} d^3 * mu(d)^2.
a(n) = abs(A328640(n)).
G.f.: Sum_{k>=1} mu(k)^2 * k^3 * x^k / (1 - x^k). - Ilya Gutkovskiy, Feb 06 2022
Multiplicative with a(p^e) = 1 + p^3. - Amiram Eldar, Feb 06 2022
Sum_{k=1..n} a(k) ~ c * n^4, where c = zeta(4)/(4*zeta(2)) = Pi^2/60 = 0.164493... . - Amiram Eldar, Nov 10 2022
EXAMPLE
a(4) = 9; a(4) = Sum_{d|4} d^3 * mu(d)^2 = 1^3*1 + 2^3*1 + 4^3*0 = 9.
MATHEMATICA
a[1] = 1; a[n_] := Times @@ (1 + FactorInteger[n][[;; , 1]]^3); Array[a, 100] (* Amiram Eldar, Feb 06 2022 *)
PROG
(PARI) a(n) = sumdiv(n, d, if (issquarefree(d), d^3)); \\ Michel Marcus, Feb 06 2022
CROSSREFS
Sum of the k-th powers of the squarefree divisors of n for k=0..10: A034444 (k=0), A048250 (k=1), A351265 (k=2), this sequence (k=3), A351267 (k=4), A351268 (k=5), A351269 (k=6), A351270 (k=7), A351271 (k=8), A351272 (k=9), A351273 (k=10).
Sequence in context: A225300 A053825 A328640 * A369721 A369759 A033479
KEYWORD
nonn,mult
AUTHOR
Wesley Ivan Hurt, Feb 05 2022
STATUS
approved