コンテンツにスキップ

ラプラス分布

出典: フリー百科事典『ウィキペディア(Wikipedia)』
ラプラス分布
確率密度関数
Probability density plots of Laplace distributions
累積分布関数
Cumulative distribution plots of Laplace distributions
母数 位置母数英語版
尺度母数英語版
確率密度関数
累積分布関数
期待値
中央値
最頻値
分散
歪度
尖度
エントロピー
モーメント母関数
特性関数
テンプレートを表示

ラプラス分布(ラプラスぶんぷ、: Laplace distribution)は連続確率分布の一つで、二重指数分布: double exponential distribution)、両側指数分布とも呼ばれる。ラプラス変換で有名なフランスの数学者ピエール=シモン・ラプラスによって名付けられた。

定義と性質

[編集]

確率変数を実数 x (−∞ < x < ∞) とするときのラプラス分布の確率密度関数は以下の式で定義される。

位置母数英語版 尺度母数英語版 について、

累積分布関数

期待値は μ、分散は 2b2 である。歪度0尖度3 である。

サンプリング

[編集]

ラプラス分布の標本は以下の手法でランダムサンプリングできる。

逆関数法

[編集]

ラプラス分布は逆関数法を用いることで一様分布からランダムサンプリングできる。

累積分布関数 の逆関数は を用いて次のように表される。

ゆえに一様分布からのサンプリング値 を代入してラプラス分布からのランダムサンプリングが実現できる。

参考文献

[編集]
  • 蓑谷千凰彦、統計分布ハンドブック、朝倉書店 (2003).
  • B. S. Everitt(清水良一訳)、統計科学辞典, 朝倉書店 (2002).

関連項目

[編集]

外部リンク

[編集]