Unlock the opportunities of the AI era by equipping yourself with the knowledge and skills to harness artificial intelligence effectively.

第ï¼è¬ãã¤ã³ãããã¯ã·ã§ã³ 1.1ãã¯ããã« 1.2ãæ°å¦å°å ¥ï¼æ°ã®æ¡å¼µ 1.3ãä»é²1ï¼æ°å¦ã®èãæ¹ 1.4ãä»é²2ï¼ã®ãªã·ã£æåä¸è¦§ 第ï¼è¬ãåçé¢æ° 2.1ãã¯ããã« 2.2ãææ°é¢æ° 2.3ãä¸è§é¢æ° 2.4ãææ°é¢æ°ã®å¥å®ç¾© 2.5ãï¼»â¼Aï¼½ãªã¤ã©ã¼ã®å ¬å¼ 2.6ãä»é²1ï¼äºé å®çï¼äºé å±éï¼ 2.7ãä»é²2ï¼ç·åè¨å· 2.8ãä»é²3ï¼sin θ/θâ1 (θâ0) ã®è¨¼æ 2.9ãä»é²4ï¼ä¸è§é¢æ°ã®åå ¬å¼ã®è¨¼æ 第ï¼è¬ããã¯ãã« 3.1ãã¯ããã« 3.2ããã¯ãã«ããã¤æ§è³ª 3.3ãå ç© 3.4ãæ½è±¡åããããã¯ãã«ã®æ¦å¿µã¨ä¾ 3.5ãå¤ç© 3.6ãnæ¬ã®ãã¯ãã«ãå¼µãn次å ä½ç© 3.7ãä»é²1ï¼Levi-Civitaè¨å· 3.8ãä»é²2ï¼å¤ç©ã®å ¬å¼ã®è¨¼æ 3.9ãä»é²3ï¼ç½®æã¨è»¢åæ°ã®å¶å¥æ§ 第ï¼è¬ãè¡åâ ï¼é£ç«ä¸æ¬¡æ¹ç¨å¼ 4.1ãã¯ããã« 4.2ãæãåºãæ³ 4.3ãè¡åå¼
京é½å¤§å¦ã®å¤å½©ãªç 究è ããæå 端ã®ç 究çµæãç¥è¦ããã¨ã«è¦è´è ã®ç´ æ´ãªçåã«ãçãããã·ãªã¼ãºã§ããçããã®è³ªåããå¯ããã ããï¼ ï¼æããããããªé¢¨ãæ°ããªã¹ãã¼ã¸ã¸ã®æ ç«ã¡ãåããå£ç¯ã大å¦ã§ã¯æ¯å¹´ã年度æ«ã§å®å¹´éè·ããç 究è ã®æå¾ã®ææ¥ããæçµè¬ç¾©ããå®æ½ããã¦ãã¾ããæçµè¬ç¾©ã¯ãæ®æ®µã®å¦çåãã®ææ¥ã¨ã¯è¶£ãç°ãªããç 究ææããã¨ã«ä¸äººã®ç 究è ã®ããã¿ã俯ç°ããå 容ãèªãããã²ã¹ããç»å ´ãããã©ã¤ãé ä¿¡ãããããããã®ãããã¾ããé·å¹´ã®ç 究ã«ããå°éããççãèªãè¨èã«ã¯ãçµé¨ããå¾ãããå¤ãã®ã¡ãã»ã¼ã¸ãè¾¼ãããã¦ãã¾ããåæ¥å¼ã®ç·é·å¼è¾ãã¾ãã人çã®æéã¨ãªãã¡ãã»ã¼ã¸ãèªãããæ¯å¹´è©±é¡ãéãã¾ããæ ç«ã¤äººãéãåºã人ãããããã®è¨èã«æ³¨ç®ãã¦æçµè¬ç¾©ãåæ¥å¼ã®åç»ãã覧ãã ããã å»å¦é¨éå±ç é¢ã®å»å¸«ããè °çãé«è¡å§ããã¤ç ãªã©èº«è¿ãªç¾æ£ã«ã¤ãã¦è§£èª¬ããåç»ã·ãªã¼ãºã§ãã Qï¼
ç 究ã«ããã°ããã³ãç´ã«èµ°ãããã¨ããè¡çºã¯ãè¤æ°ã®è³é åãæ´»æ§åãããè¨æ¶åãèªç¥æ©è½ã®åä¸ã«ã¤ãªãããï¼PHOTOGRAPH BY OKSANA NAZARCHUK, GETTY IMAGESï¼ ããããããã¹ããã¨ãè²·ãç©ãªã¹ããæå¾ã«ã¡ã¢ããã¨ãã®ãã¨ãæãåºãã¦ã»ãããããããããã³ã¨ç´ã¯ä½¿ã£ã¦ããªãã®ã§ã¯ãªãã ãããããã®10å¹´ãæ室ã§ã®ææ¥ããè·å ´ã§ã®ä¼è°ã¾ã§ãç§ãã¡ã®æ¥å¸¸ã«ãã£ãææ¸ãã¨ããè¡çºã¯ãã¼ãã¼ãã¨ç»é¢ã«ç½®ãæãããã¦ãããä¸çãè¦æ¸¡ãã¨ãè±èªã®ææ¥ã§çè¨ä½ãæããªããªã£ã¦ãã¾ã£ãå¦æ ¡ãããããããããã³ã¨ç´ã使ã£ã¦æ¸ãè¡çºã«ãã£ã¦ããã¸ã¿ã«ãã¼ã«ã§ã¯åç¾ã§ããªãèªç¥æ©è½ã¸ã®å¹æãå¾ããããã¨ããå¤ãã®ç 究ã§ç¤ºããã¦ããã ãçµ±è¨çã«è¦ãã¨ãææ¸ãã¨è¨æ¶ã®é¢ä¿ããã¼ãã«ããç 究ã®ã»ã¨ãã©ï¼æ¥æ¬ããã«ã¦ã§ã¼ãç±³å½ãªã©ã§è¡ããããã®ï¼ã¯ãã³ã³ãã¥ã¼ã¿ã¼ã§å ¥åããããèª
Pythonã¦ã¼ã¶ã®ããã®ã°ãã¼ãã«ã¤ãã³ããPyCon APAC 2023ãã2023å¹´10æ27æ¥ã¨28æ¥ã«ãTOCææã³ã³ãã³ã·ã§ã³ãã¼ã«ã§éå¬ãããã1æ¥ç®ã®åºèª¿è¬æ¼ã«ç»å£ããã®ã¯ã京é½å¤§å¦å½éé«çæè²é¢ã®åå¤ä¸ææããWhy University Teachers Wrote a Python Textbook?ãã¨é¡ãã大å¦ã®ææ¥ã®ããã«æ¸ãä¸ããããPythonã®æç§æ¸å·çã®èæ¯ãç´¹ä»ãããããã°ã©ãã³ã°åå¿è ã®ã¤ã¾ãããã¤ã³ããç解ãã¦ããããããããªãªã¸ãã«ã®æç§æ¸ãä½ã£ãã¨ããåå¤ææãã¯ããã¦ããã°ã©ãã³ã°ã«è§¦ããå¦çåãã®ææ¥ã¨æç§æ¸ã«è¾¼ããæããèªã£ãã Pythonãå¦ã³ãå¦çã¯èå³ãã²ããã¦ãã åå¤ææãPythonãæããã¯ã± 京é½å¤§å¦ã®å½éé«çæè²é¢ã§æé¤æè²ãç¹ã«æ°å ¥çåãã®æè²ãæ ã£ã¦ããåå¤ææãèªèº«ã®ããã°ã©ãã³ã°ã¨ã®åºä¼ãã¯ãå¦çæ代ã®1978
ããã°ãã¼ã¿ã®æ代ã¨è¨ããã¦ãããè¿å¹´ããã¼ã¿ã®è¨æ¸¬ããã³ã¹ãã¬ã¼ã¸æè¡ã®çºéã¨ã¨ãã«ã大è¦æ¨¡ãã¼ã¿ããé©åã«æ å ±æ½åºãããããææ決å®ã«æ´»ç¨ãããã¨ãå¿ é ã®ãªãã©ã·ã¼ã¨ãªã£ã¦ããããã£ã½ããã¼ã¿ã®å½¢å¼ã¨å¯¾å¿ãã解ææ³ã®å¤åã¯èãããæ°ããæ¹æ³ãæ£ããå©ç¨ããããã«ãæ®éçãªçµ±è¨ç§å¦ã®åçãç解ãããã¨ãéè¦ã§ãããåºç¤ã¨ãªãçµ±è¨æ°çã¨ã¨ãã«ãå ·ä½çãªçµ±è¨è§£æææ³ã¨ãã®éç¨ããçµ±è¨ã½ããã¦ã¨ã¢ã«ãããã¼ã¿è§£æå®ç¿ãéãã¦ç¿å¾ããã ãçµ±è¨ãã¼ã¿è§£æâ ¡ã§ã¯ãçµ±è¨ã½ããã¦ã¨ã¢Rã®èª¬æã®å¾ãé«æ¬¡å 大è¦æ¨¡ãã¼ã¿ã«æ½ãç¸é¢æ§é ãçºè¦ãè¨éããå¤å¤é解æãããã³æç³»åãã¼ã¿ã®åºæ¬çãªè§£ææ³ãå¦ã¶ãçµ±è¨ææ³ã®éç¨ã¨ãã¼ã¿ãã³ããªã³ã°ãå®ç¿ãããã¨ã«å ããå¾®åç©åå¦ãç·å代æ°å¦çã®åæ課ç¨æ°å¦ã¨é£æºããæ°çç§å¦çå´é¢ãæèããªãããå®é¨ãä»ãã¦çµ±è¨ææ³ã®åçæ§ã¨ä½ç³»ãæå¾ããã
NHK ã§æ¾æ ããããç¬ããªãæ°å¦ãã¨ããçªçµã®æ¬¡ã®åã話é¡ã«ãªã£ã¦ããï¼ www.nhk.jp ä¼ç»æå³ã¨ãã¦ã¯ã\(1+1=2\) ã¨ããå¼ãéãã¦æ°å¦åºç¤è«ã¨ããåéãç´¹ä»ãããã¨ãããã®ã ã£ãã®ã ãï¼ããã¤ãæªãã説æã誤解ãæã説æï¼ç«¯çã«èª¤ã£ã¦ãã説æãæ£è¦ãããï¼ã¨ãããï¼å ¨ä½ãéãã¦ãããããã®ãã¨ã¦ãå¤ãã£ãï¼ã©ãå°ãªãè¦ç©ãã£ã¦ãçªçµã®å 容ã®åå以ä¸ããããããã®ã«ãªã£ã¦ããï¼æ£ç´ï¼å ¨ç¶ç¬ããªãï¼ç¬ããªãã®ã§ã¯ãªãç¬ããªãï¼ ãã®è¨äºã¯ãããã£ã説æã«æ³¨æåèµ·ãä¿ãï¼ç°¡åã«ã ãè¨æ£ãããããã®è¨äºã§ããï¼NHK+ ã§ã®é ä¿¡æéãä¸é±éã®ããï¼ããªãæ¥ãã§æ¸ãã¦ãã*1ï¼ãã®ããï¼ããã¤ããããã«ããã£ããæç®ãå¼ãæãã¦ããå ´åãããï¼ä½ããã®å½¢ã§ï¼ãããããããæç®ããã£ããå¼ãããã®ãæ¸ãã¤ããã§ã¯ãããããã®ãããã®èª¬æã¯æªãããã¨ãããã¨ãæ¸ãã¦ããã ãã§ãæå³
ã³ã³ãã³ããããã¯ãæå¹ã§ãããã¨ãæ¤ç¥ãã¾ããã ãã®ãµã¤ããå©ç¨ããã«ã¯ãã³ã³ãã³ããããã¯æ©è½ï¼åºåãããã¯æ©è½ãæã¤æ¡å¼µæ©è½çï¼ãç¡å¹ã«ãã¦ãã¼ã¸ãåèªã¿è¾¼ã¿ãã¦ãã ããã â
© 2016 The University of Tokyo Center for Research and Development of Higher Education ãã¤ãªã¹ãã使ãã¨ãèªèº«ãèå³ãæã¤è¬ç¾©ããã§ãã¯ã§ãã¾ãã ãã§ãã¯ããè¬ç¾©ã¯éæãã¤ãªã¹ããéããã¨ã«ãã確èªã§ãã¾ãã ãã¤ãªã¹ãã使ãããã«ã¯ãã°ã¤ã³ããã¦ãã ããã ãã©ã¤ãã·ã¼ããªã·ã¼
ã¹ãã¯ãã«ä¸å¤éã¨ãã®å¿ç¨ã«ã¤ã㦠å©æã»ç³å·ãå 大å¦ã§ç¿ãå¹¾ä½å¦ã®åºæ¬çãªè©±ã« Morse çè«ã¨ãããã®ãããã¾ããããã¯å¤æ§ä½ã®æ§è³ªãããã®ä¸ã®å½ æ°ãç¨ãã¦èª¿ã¹ãçè«ã§ããããã¯åºæ¬çã«ã¯ã©ã®ãããªé¢æ°ãç¨ãã¦ãåãçããåºãã¾ããããããé ã«å©ç¨ãã¦ãåé¢æ°ã«å¯¾ãã¦ã¹ãã¯ãã«ä¸å¤éã¨ãã°ããå¤ãç´ã¥ãããã¨ãã§ãã¾ããã·ã³ãã¬ã¯ãã£ã ã¯å¹¾ä½å¦çã§ç¨ãããã Floer çè«ã¯ Morse çè«ãææ¬ã¨ãã¦ã¤ããããçè«ã§ãããããã«å¯¾ããã¹ã㯠ãã«ä¸å¤éããå¹¾ä½å¦çæ§è³ªãå°ãã ããã¨ã«å¿ç¨ããã¦ãã¾ãããã®ãããã®ãã¨ã«ã¤ãã¦ãç´¹ä»ããäº å®ã§ãã ä½æ§é ã®å¾©å ãéããé ã¢ã¼ãã«å¹¾ä½å¦å ¥é å©æã»è¾»æãæ太 é ã¢ã¼ãã«å¹¾ä½å¦ã§ã¯ï¼ä½ã«å¯¾ããã¬ãã¢ç¾¤ã®ãããªï¼æ§é ã®å¯¾ç§°æ§ã®ãªã群ãå ã®æ§é ã®æ å ±ãã©ã®ç¨ 度ä¿æãã¦ãããã«ã¤ãã¦èå¯ãã¾ãããã®å¯¾ç§°æ§ã®ãªã群ãï¼é«åº¦ã«ï¼éå¯
âççä¼æããã ããâ è·å ´ã®è©±ã§ã¯ããã¾ãããä»ãå¦æ ¡ã§ããããªå£°ãä¸ããå§ãã¦ãã¾ãã ã女åã ããããããå¦æ ¡ã«å¿ è¦ãªã®ï¼ã ããæã£ã人ã«ãå±ãã¦ã»ãããé«æ ¡çã®è¨´ãã§ãã ï¼å¤§éªæ¾éå± è¨è é´æ¤åï¼
PDFå½¢å¼ã®ãã¡ã¤ã«ã御覧ããã ãå ´åã«ã¯ãAdobe Acrobat Readerãå¿ è¦ãªå ´åãããã¾ãã Adobe Acrobat Readerã¯éçºå ã®Webãã¼ã¸ã«ã¦ãç¡åã§ãã¦ã³ãã¼ãå¯è½ã§ãã
æ¬ãã¼ã¸ã§å ¬éãã¦ããè¬ç¾©ã¹ã©ã¤ãã¯ãã¹ã¦CC-BYã§ãï¼ãåèè³æãã¯é¤ãï¼ï¼ ç·¨éå¯è½ãªPowerPointãã¡ã¤ã«ï¼ç¡å, CC-BYï¼ãå¿ è¦ãªå ´åãï¼ä»å¾æ¹è¨ããã¨ãã«é£çµ¡ãå¿ è¦ãªå ´åã¯ï¼ä¸è¨ã¾ã§ãé£çµ¡ãã ããï¼PPTã¯100以ä¸ã®å¤§å¦çã¸æä¾æ¸ã¿ã§ãï¼ ãæ°è»½ã«ã©ããï¼ï¼ é£çµ¡å ï¼mds-lecture-slides@human.ait.kyushu-u.ac.jp ï¼å ç°ï¼ã»ã³ã¿ã¼é·ï¼ã»ç¦å¨ï¼ã»ã³ã¿ã¼ç§æ¸ï¼ï¼ ã¹ã©ã¤ãå 容ã«ã¤ãã¦ééãããã£ãå ´åãï¼ä¸è¨é£çµ¡å ã«ãé£çµ¡ããã ããã¨ï¼å¤§å¤ã«å©ããã¾ãï¼ï¼ä¿®æ£ã®ä¸ï¼æ¹è¨çãéæã¢ãããã¼ããããã¾ãï¼ï¼ ãã¼ã¿ãµã¤ã¨ã³ã¹æ¦è«â ï¼â ¡ï¼2024/10/18çï¼å¤ä¼ã¿ä¸ã®3æ¥éã§ã®éä¸è¬ç¾©ãäºå®ï¼2023年度ããã¯ï¼é«å¹´æ¬¡åºå¹¹æè²ç§ç®ããã¼ã¿ãµã¤ã¨ã³ã¹ç·è«â &â ¡ãã¨ãã¦ãéè¬äºå®ï¼ãªãï¼é»æ°æ å ±å·¥å¦ç§ããã¼ã¿ãµã¤ã¨ã³ã¹åºè«ãã¨ã»ã¼åä¸å
ç·åçã¯10æ4æ¥ãç¡æã®ãªã³ã©ã¤ã³è¬åº§ã社ä¼äººã®ããã®ãã¼ã¿ãµã¤ã¨ã³ã¹æ¼ç¿ãããªãã¥ã¼ã¢ã«ãã¦éè¬ãããAIæè¡ãªã©ã®ææ°ååãè¸ã¾ããä¸é¨ãæ¹è¨ãããéè¬æéã¯12æ13æ¥ã¾ã§ã 2016å¹´ã®éè¬ããã®ã¹5ä¸7000人ãåè¬ããè¬åº§ããã¼ã¿ãµã¤ã¨ã³ã¹ã«æºããå°é家ã大å¦ææãããã¼ã¿ãµã¤ã¨ã³ã¹ãåºç¤ããæããã MOOCè¬åº§ãã©ãããã©ã¼ã ãgaccoãã§ã1å10åç¨åº¦ã®è¬åº§ã5ï½7åã§æä¾ãããã«ãè£è¬ã»æ¼ç¿ï¼10åç¨åº¦Ã11åï¼ãããã ãªãã¥ã¼ã¢ã«ã§ææ°ãããã¯ã¹ã追å ããã»ãã仮説æ¤å®ãçµ±è¨è§£æã½ããã使ã£ããã¼ã¿åææ¹æ³ãç´¹ä»ãããªã©ãå 容ãä¸é¨å·æ°ããã ç»é²ããã°èª°ã§ãç¡æã§åè¬ã§ãããåè¬ç»é²ã¯12æ5æ¥ã¾ã§ã é¢é£è¨äº ç·åçã誰ã§ã使ããçµ±è¨ãªã¼ãã³ãã¼ã¿ãç¡æãªã³ã©ã¤ã³è¬åº§ã¹ã¿ã¼ã ç·åçãã誰ã§ã使ããçµ±è¨ãªã¼ãã³ãã¼ã¿ããéè¬ãçµ±è¨ãªã¼ãã³ãã¼ã¿ãæ´»ç¨ããã
NVIDIAã¨æ»è³å¤§å¦ã¯9æ8æ¥ããã¼ã¿ãµã¤ã¨ã³ã¹æè²ç¨ã®è¬ç¾©è³æãDLI ãã¼ã¿ãµã¤ã¨ã³ã¹æè²ããããã®æ¥æ¬èªçã®ç¡åæä¾ãå§ãããåè³æã¯NVIDIAã®ãã¸ã¿ã«ã¹ãã«è²æããã°ã©ã ãDeep Learning Instituteãï¼DLIï¼ã®è¬ç¾©è³æã§ãæ»è³å¤§å¦ãæ¥æ¬èªã«ç¿»è¨³ãããã®ãæè²æ©é¢ã®æå¡åãã«æä¾ãããå©ç¨ã«ã¯NVIDIAã®éçºè ã¢ã«ã¦ã³ããå¿ è¦ã è¬ç¾©è³æã§ã¯ããã¼ã¿ãµã¤ã¨ã³ã¹ã¨RAPIDSã®å ¥éãããã¼ã¿åéã¨åå¦çï¼ETLï¼ãããã¼ã¿ã»ããã«ããããã¼ã¿å«çã¨ãã¤ã¢ã¹ãããã¼ã¿çµ±åã¨åæãããã¼ã¿ãã¸ã¥ã¢ã©ã¤ã¼ã¼ã·ã§ã³ããHadoopãHiveãSparkã¨HBaseã«ããã¹ã±ã¼ã«ã¨åæ£ã³ã³ãã¥ã¼ãã£ã³ã°ããæ©æ¢°å¦ç¿ï¼åé¡ï¼ããæ©æ¢°å¦ç¿ï¼ã¯ã©ã¹ã¿ãªã³ã°ã次å åæ¸ï¼ãããã¥ã¼ã©ã«ãããã¯ã¼ã¯ããªã©ã®åéãåãä¸ããã è³æã®å ã«ãªã£ããDLI ãã¼ã¿ãµã¤ã¨ã³ã¹æè²ããã
[éè¦ãªãç¥ãã (2023/8/12)] ç¾å¨ï¼ã¹ã©ã¤ãã® p.10 ã«ä¸ååãªè¨è¿°ãããã¾ãï¼ã«ã¼ãã®çã㯠0 以ä¸ã®æ°ã«éå®ãããã¨ã«æ³¨æãã¦ãã ãã (ãã¨ãã° -3 ã 2 ä¹ãã¦ã 9 ã§ããï¼ã«ã¼ã 9 㯠-3 ã§ã¯ããã¾ãã)ï¼ãªãï¼ç¾å¨çè ã®ãã½ã³ã³ãä¿®çä¸ã§ãã¼ã¿ããªãã®ã§ï¼ä¿®â¦
ã©ã³ãã³ã°
é害
ã©ã³ãã³ã°
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}