High-quality Anime Character Generation and Design powered by GAN (Generative Adversarial Networks).
Discover amazing ML apps made by the community
For significantly better and customizable anime image generation, check out Holara AI Creativity Slider       0.5 Higher creativity values tell the AI to be more creative and detailed, but also messy and weird Speed Slider    1.5 Space: pause grid, Drag: pan grid, Click: open image in new tab F: fullscreen mode, Z: toggle zoom on hover, V: video mode You can find updates about anime and AI on Twi
A tutorial explaining how to train and generate high-quality anime faces with StyleGAN 1+2 neural networks, and tips/scripts for effective StyleGAN use. Generative neural networks, such as GANs, have struggled for years to generate decent-quality anime faces, despite their great success with photographic imagery such as real human faces. The task has now been effectively solved, for anime faces as
ãçæDeep Learningããèªã¿ã¾ãã çæã«ç¹åããAIã®æ¬ãçæDeep Learningããèªã¿ã¾ããã çæ Deep Learning âçµµãæããç©èªãé³æ¥½ãä½ããã²ã¼ã ããã¬ã¤ãã ä½è :David Fosterçºå£²æ¥: 2020/10/05ã¡ãã£ã¢: åè¡æ¬ï¼ã½ããã«ãã¼ï¼ ç¬åµåã¨ã¯ãææ ®æ·±ã模å£ä»¥å¤ã®ä½ãã®ã§ããªã ã¨ã¯18ä¸ç´ãã©ã³ã¹ã®å²å¦è ã´ã©ã«ãã¼ã«ã®è¨èã¨ã®ãã¨ã§ãããAIã«ãã模å£ã¨åµé ã®å¢çã«é¢ãã¦èãããããããããªæ¬ã§ããã æ¬ã®å 容ã¯ããªã¼ãã¨ã³ã³ã¼ãããã¯ãã¾ãGANã§ã®ç»åçæãæç« çæãé³æ¥½çæãã¢ãã³ã·ã§ã³ãå¼·åå¦ç¿ã®ä¸çã¢ãã«ã¾ã§ã¨ã¿ã¤ãã«éãçæç³»ã®AIæè¡ãå¹ åºãã«ãã¼ãã¦ãã¾ãã çµæ§éª¨å¤ªã§ãAIã®æ¬ã¯1åç®ã¨ãã人ãèªãæ¬ã§ã¯ãªãã¦ãä½åãAIé¢ä¿ã®æ¸ç±ãèªãã§ãããç¨åº¦èªåã§å®è·µãã¦ãçæç³»ã®AIï¼Auto Encoderã¨
Japanese Idol GeneratorJapanese idols are really cute and makes some people happier. So Iâm developing a program to generate Japanese idols. I also developed face generator with face characteristic controllers (like more smiling, more pointy nose, more straight hairâ¦etc). This is the video of how I controll the characteristics of idol faces. If you are interested in how this system is built, pleas
ã¯ããã« AdventCalenderè«æ24æ¥ç®æ å½ã®ã±ããµããã§ãã çªç¶ã§ãã,æè¿ãã®ãããªè«æ1ãåºã¾ããã ãã¹ã https://t.co/QoXamqHB9w â ã±ããµãã (@pacifinapacific) December 21, 2019 ãªãã¨ãã ã®ï¼æçµµãVtuberã®ã¢ãã«ã«ã§ãã¡ããã®ã§ãããã³ãã³ã«ä¸ãã£ã¦ãã解説åç»ã§ã¯è³è³ã®ã³ã¡ã³ããå¤æ°å¯ãããã¦ãã¾ããã ããã¯ãããï¼ã¨ãããã¨ã§ç§ãèªãã ã®ã§ããããã¼ã¿ã»ãããä½ã段éã§ãããå´åãè²»ããã¦ããããã§ãããï¼ï½ã¢ãã«1ã¤1ã¤ãç®ãéããããéããããé¡ãå¾ãããã¨å·®åãã¨ããã©ãã«ä»ããã¦ããã®ã¯ã¨ã¦ã大å¤ã§ãã ããããªã©ãã«ä»ãã®æéã失ããã¦ä¼¼ããããªãã¨ãããããï¼ï¼ã ãã®ä¸ã¤ã®å¯è½æ§ã¨ãã¦ä»åStyleGANã«çç®ãã¦ã¿ã¾ããStyleGANã¯æ» è¶è¦è¶ç¶ºéºãªç»åãçæã§ããã¢ãã«ã§
ã¯ããã« ã深層çæã¢ãã«ãå·¡ãæ ãã·ãªã¼ãºç¬¬3åã¯ã¿ãªãããå¾ ã¡ããã®ï¼ï¼ï¼GANã®ã¾ã¨ãã§ã. GANã¯ç¶ºéºãªç»åãçæãããã¨ã«é·ãã¦ãã, ãã®äººæ°ã¯FlowãVAEã¨æ¯ã¹ã¦ãå§åçã§ã. ãã®ä¸æ¹ã§, ä¸ã«ã¯GANã®ç 究ãããµãã¦ãã¦, ç»åçæã«éã£ã¦ãææ¡ããã®ãå°é£ãªç¶æ ã«ãªã£ã¦ãã¾ã. æ¬è¨äºã§ã¯, å ç¥ããææ°ã®ç 究ã«è³ãæ´å²ã®ä¸ã§éè¦ã¨æããããã®ãã¸ã£ã³ã«å¥ã«ç´¹ä»ãããã¨æãã¾ã. ä»åãç»åçæã®ã¿ãæ±ãã¾ã. GANã®åºæ¬ GANãã®ãã®ã«ã¤ãã¦ã®è§£èª¬ã¯æ¥æ¬èªã®ãã®ã«éã£ã¦ãæ¢ã«å¤æ°ããã®ã§, ããã§ã¯ç°¡åã«è§¦ãããã¨ã¨ã, å¾ã«ç¶ãåææ³ã®ç´¹ä»ã«éä¸ãããã¨æãã¾ã. ãåãã®æ¹ã¯é£ã°ãã¦ãã ãã. å ¨ä½å A Beginner's Guide to Generative Adversarial Networks (GANs) | Skymind GANã¯çæ
æ ªå¼ä¼ç¤¾ã©ãã£ã¦ã¹ã»ãã¡ã¤ãï¼æ¬ç¤¾ï¼æ±äº¬é½æ°å®¿åºã代表åç· å½¹ï¼æ¼å大ä»ãä»¥ä¸ RADIUS5ï¼ã¯ã100ä¸ç¨®é¡ä»¥ä¸ã®å¤ç¨®å¤æ§ãªé¡ã¤ã©ã¹ããAIã«æãã¦ããããæ°ãµã¼ãã¹ã彩ã¡ããï¼SAIï¼ããcre8tiveAI ã§æä¾éå§ãã¾ããã ã¤ã©ã¹ãçæAIï¼å½©ã¡ããã®ãããã¤ã¡ã¼ã¸ éçºã®èæ¯ Deep learning æè¡ã®é²å±ã«ãã£ã¦ãæ§ã ãªæ¥çã«æè¡é©æ°ãèµ·ãã£ã¦ãã¾ããããã¾ã§äººã®æã§ã¯è§£æ±ºã«è¨å¤§ãªæéãããã£ã¦ããä½æ¥ããä¸ç¬ã§è§£æ±ºã§ãã¦ãã¾ãé©æ°çãªãµã¼ãã¹ãç»å ´ããããã«ãªã£ã¦ãã¾ããã ããããæè¡é©æ°ã®æ©æµã¯ã¢ãã¡å¶ä½ãã²ã¼ã å¶ä½ãã¯ããã¨ããã¯ãªã¨ã¤ãã£ãå¶ä½æ¥åãè¡ã人éã«ã¯ãã¾ã ã¾ã å±ãã¦ããªãç¶æ³ã§ãã RADIUS5ã§ã¯ãDeep learning æè¡ãç¨ããç 究éçºãè¡ããã¯ãªã¨ã¤ãã£ãã®ç¾å ´ã§å©ç¨ãããã¨ãã§ããAIãµã¼ãã¹ã®éçºã«åãçµãã§åãã¾ããã20
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? ã»åconvolution層å¾ã«styleã®èª¿æ´ãè¡ã ã»ç´°é¨ã®ç¹å¾´ï¼é«ªè³ªããã°ããï¼ã¯ãã¤ãºã«ãã£ã¦çæããã ã»æ½å¨å¤æ°$z$ãä¸éæ½å¨å¤æ°$w$ã«ãããã³ã°ãã ã»ããã¾ã§ã®GANã®ããã«Generatorã®å ¥å層ã«æ½å¨å¤æ°$z$ãå ¥ãããã¨ã¯ããªã Style-based generator Aï¼$w$ãstyle($y_s,y_b$)ã«å¤ããããã®ã¢ãã£ã³å¤æ $y_s,y_b$ã¯ãã£ã³ãã«ãã¨ã«å¤ãã㤠Bï¼ãã¤ãºã¯1ãã£ã³ãã«ç»åããæã convã®åºåã«è¶³ãåãããåã«ããã¤ãºããã£ã³ãã«ãã¨ã«ã¹ã±ã¼ãªã³ã°ãããã¨ãæå³
Paper (PDF): http://stylegan.xyz/paper Authors: Tero Karras (NVIDIA) Samuli Laine (NVIDIA) Timo Aila (NVIDIA) Abstract: We propose an alternative generator architecture for generative adversarial networks, borrowing from style transfer literature. The new architecture leads to an automatically learned, unsupervised separation of high-level attributes (e.g., pose and identity when trained on huma
ããã«ã¡ã¯ãã¨ã¯ãµã¦ã£ã¶ã¼ãºAIã¨ã³ã¸ãã¢ã®é è¤ã§ãã ã¿ãªããã¯ãã¤ãã³ã°ã®åçã§ããã¡ããã°ããåãã¦ãã¾ã¨ãã«æ®ãããªãã£ãã¸ã£ã¤ã¢ã³ã«æ®´ããããããã¨ã¯ç¡ãã§ããããã ãããªã¨ããä¸è½ããªã³ã¿ã¼ãããã£ãã便å©ã§ãããããæ®ã£ã¦ãã¾ã£ãåçã®ãåãããºã¼ã ãå¾ããä¿®æ£ãã¦ãåã£ã¦ãªãã£ãã¨ããã復å ãã¦åããªã³ãã§ããã¨ãããã®ã§ãã ãããæã¡ä¸»ã§ãããã©ãããã¯ããã¡ã«ãã¾ã æ¥ã¦ãã¾ãããä»æ¹ããªãã®ã§AIã®åã§ãªãã¨ããã¾ãããã ç®ç åçã®å¤å´ã«åã£ã¦ãããã®ãæ¨æ¸¬ããèªç¶ãªå½¢ã§åæãã¾ãã ç©ä½ã®é¨åç»åãããã®ç¨®é¡ãªããä½ç½®ãæ¨æ¸¬ããæ¢åç»åãæ¬ã«å ¨ä½ã復å ãããã¨ããåççã«ã¯å¯è½ãªã¯ãã§ãã ãã®éç¨ãç´æ¥ã«ããã°ã©ã ãããã¨ã¯ç¾å®çã§ã¯ããã¾ããã 代ããã«ç³ã¿è¾¼ã¿ãã¥ã¼ã©ã«ãããã¯ã¼ã¯(CNN)ã«ãããã¤ã¾ãã§å¦ç¿ããã¾ãã å¦ç¿ã¢ãã« æµå¯¾ççæãããã¯ã¼
NIPS2017æ¬ä¼è°ã§æ¡æããã Generative Adversarial Networks (GAN) è«æãã¾ã¨ãç´¹ä»ãã¦ãã¾ããå¦ç¿ã®åææ§ã»å®å®æ§ãåæ師ããå¦ç¿ãMode Collapseåé¿ã解ãã»ãããã表ç¾å¦ç¿ãæ§é çãªçæãçãNIPS2017èªã¿ä¼@PFNã§ã®çºè¡¨è³æã§ããRead less
I experimented with generating faces of cats using Generative adversarial networks (GAN). I wanted to try DCGAN, WGAN and WGAN-GP in low and higher resolutions. I used the CAT dataset (yes this is a real thing!) for my training sample. This dataset has 10k pictures of cats. I centered the images on the kitty faces and I removed outliers (I did this from visual inspection, it took a couple of hours
ããªã¼ç´ æãµã¤ãããããã¨ããã«åºã¦ãã人é風ã®ç»åãèªåçæããã¢ãã«ãDeep Learningã§ä½ãã¾ãããå®è£ ã«ã¯Google製ã®ã©ã¤ãã©ãªãTensorFlowãã¨æ©æ¢°å¦ç¿ã¢ã«ã´ãªãºã ã®ãDCGANããWasserstein GANããç¨ãã¦ãã¾ãã 以ä¸ã¯çæããã人éç»åã®ãã¡ãããªãã«ããããªãã®ã®ä¸ä¾ã§ããé ¬ã®ã¨ããã赤ããªã£ã¦ãã¦ä½ã¨ãªãæ¬å®¶ãããã¨ãã®ç¹å¾´ãæãããã¦ããã¨æãã¾ãã ããããã¨ããã¨ã¯ï¼ å®è£ ããææ³ã®æ¦è¦ DCGANãWasserstein GANã«ã¤ã㦠Generator Discriminator Generatorã¨Discriminatorã®å¦ç¿ å¦ç¿ãå®è£ ã®è©³ç´° GeneratorãDiscriminatorã®ãããã¯ã¼ã¯æ§æããã©ã¡ã¼ã¿ã¼ è¨ç·´ãã¼ã¿ ãã®ä» å¦ç¿çµé ã¢ãã«ãæ¤è¨¼ãã å ¥åã«ãã¤ã¢ã¹ãæãã¦ããç»åãåºããããã ã¾
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}