This domain may be for sale!
This domain may be for sale!
ã¢ããã¼ã·ã§ã³ãã¼ã«ã¯ç»åã使ã£ãæ©æ¢°å¦ç¿ã®ã¿ã¹ã¯ã§ãç»åã«æ師ã©ãã«ãä»ä¸ããããã®GUIãã¼ã«ã§ãã æãç©ä½æ¤åºç¨ã®ã¢ããã¼ã·ã§ã³ãã¼ã«ã¨ãã¦ãããªã®ä½ãã¾ããããä»ã¯ãã£ã¨è¯ããã®ãè²ã ã¨ããã¿ãããªã®ã§ã調ã¹ã¦ã¿ã¦è¯ãããã ã£ããã®ãããã¤ãããã¯ã¢ãããã¾ããã ã¡ãªã¿ã«èª¿ã¹ãã ãã§ãimglab以å¤ã¯ã¾ã 使ã£ã¦ã¾ããã ã¢ããã¼ã·ã§ã³ãã¼ã«ã®ãªã¹ãã¯ãããåèã«ãªãã¾ãã https://en.wikipedia.org/wiki/List_of_manual_image_annotation_tools ãªã³ã©ã¤ã³ãã¼ã« LabelBox LabelBoxã¯ãªã³ã©ã¤ã³ã§ä½¿ç¨å¯è½ãªã¢ããã¼ã·ã§ã³ãã¼ã«ã§ãå¹´5000ã©ãã«ã¾ã§ç¡æã§ä½¿ãã¾ããç»åãã¼ã¿ãLobelBoxä¸ã®ãµã¼ãã¼ã¸ã¢ãããããããããã¯AWSä¸ã®èªç¤¾ãã¼ã¿ã«å¯¾ãã¦ä½¿ç¨ãããã¨ãå¯è½ã§ããç©ä½æ¤åºç¨ã®Bound
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? ããã¯Fujitsu Advent Calendar 2017ã®18æ¥ç®ã®è¨äºã§ãã æ²è¼å 容ã¯å¯å£«éã°ã«ã¼ãã代表ãããã®ã§ã¯ããã¾ããããã ããããã¾ã§ã®åãçµã¿ãè©ä¾¡ããã¦ãå¯å£«éãQiitaã«æ£å¼åå ãããã¨ã«ãªãã¾ãã[ãªã³ã¯]ããªããå 容ã®æ£ç¢ºæ§ã«ã¯æ³¨æãæã£ã¦ãã¾ãããç¡ä¿è¨¼ã§ãã ã¯ããã« ãã®è¨äºã§ã¯ä»å¹´çºè¡¨ããããã£ã¼ãã©ã¼ãã³ã°è«æï¼ArXivã§ã®çºè¡¨ææãçºè¡¨ãããå½éä¼è°ã2017å¹´éå¬ã¾ãã¯ã¸ã£ã¼ãã«æ²è¼ã2017å¹´ã®ãã®ï¼ããç§ãå人çã«éè¦ã ã¨æã£ãè«æãåéãã¦ãã¾ããã¾ãã2016å¹´æ«ããã®è«æãéè¦
2017å¹´12æã«éå¬ããããã¿ã¼ã³èªèã»ã¡ãã£ã¢ç解ç 究ä¼ï¼PRMUï¼ã«ã¦çºè¡¨ããç³ã¿è¾¼ã¿ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ã®ãµã¼ã㤠ã2012å¹´ã®ç»åèªèã³ã³ããã£ã·ã§ã³ILSVRCã«ãããAlexNetã®ç»å ´ä»¥éï¼ç»åèªèã«ããã¦ã¯ç³ã¿è¾¼ã¿ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ (CNN) ãç¨ãããã¨ãããã¡ã¯ãã¹ã¿ã³ãã¼ãã¨ãªã£ãï¼ILSVRCã§ã¯æ¯å¹´ã®ããã«æ°ããªCNNã®ã¢ãã«ãææ¡ããï¼ä¸è²«ãã¦èªè精度ã®åä¸ã«å¯ä¸ãã¦ããï¼CNNã¯ç»ååé¡ã ãã§ã¯ãªãï¼ã»ã°ã¡ã³ãã¼ã·ã§ã³ãç©ä½æ¤åºãªã©æ§ã ãªã¿ã¹ã¯ã解ãããã®ãã¼ã¹ãããã¯ã¼ã¯ã¨ãã¦ãåºãå©ç¨ããã¦ãã¦ããï¼ æ¬ç¨¿ã§ã¯ï¼AlexNet以éã®ä»£è¡¨çãªCNNã®å¤é·ãæ¯ãè¿ãã¨ã¨ãã«ï¼è¿å¹´ææ¡ããã¦ããæ§ã ãªCNNã®æ¹è¯ææ³ã«ã¤ãã¦ãµã¼ãã¤ãè¡ãï¼ããããå¹¾ã¤ãã®ã¢ããã¼ãã«åé¡ãï¼è§£èª¬ããï¼æ´ã«ï¼ä»£è¡¨çãªã¢ãã«ã«ã¤ãã¦è¤æ°ã®ãã¼ã¿ã»ãããç¨ãã¦å¦ç¿ããã³ç¶²
ãã®è¨äºã¯ç§»è»¢ãã¾ãããç´2ç§å¾ã«æ°è¨äºã¸ç§»åãã¾ãã移åããªãå ´åã¯ã³ã³ãã¯ãªãã¯ãã¦ãã ããã ãããªãã¨ããã¦ã¿ãã âãããããã pythonã«ããæ©æ¢°å¦ç¿ã®åå¼·ãããã®ã§ãå®è·µã¨ãããã¨ã§ã人æ°ã¢ã¤ãã«ãä¹æ¨å46ãã®å人çã«å¥½ããª5人ã®ã¡ã³ãã¼ãåºå¥ãã¦è¦ã¾ããã大ããªæµãã¯ãããªæãã§ãã webä¸ããäºäººã®ç»åã100æãã¤åã£ã¦ãã ç»åããé¡é¨åãåãåºãã¦ä¿åããã¹ããã¼ã¿ã®åãåºã ç»åã®æ°´å¢ã ã¢ãã«ãå®ç¾©ãã¦ãå¦ç¿ ãã¹ã(é¡ãåè§ãå²ã£ã¦ããã®äººã®ååãåºå) 説æã¯ãããªããã«ãã¦ã彼女ãã®å¯æãã«ã¤ãã¦èªãããã¨ããã§ãããããããããã°ã§ã¯ãªãã®ã§ãå°ãæè¡çãªãã¨ãæ¸ãã¾ãã ä»åã¯jupyterã使ã£ã¦ä½æ¥ãé²ãã¾ãããnotebookå½¢å¼ãªã®ã§çµæãè¦ãããåå¿è ã«ã¯ããç°å¢ã§ãããç°å¢ã¯ä»¥ä¸ã macOS:10.13.1 python:3.6.
Interpretable Machine Learning A Guide for Making Black Box Models Explainable Christoph Molnar 2023-08-21 Summary Machine learning has great potential for improving products, processes and research. But computers usually do not explain their predictions which is a barrier to the adoption of machine learning. This book is about making machine learning models and their decisions interpretable. Afte
6. 6 çµè·¯äºæ¸¬ã®æµã ⢠ç°å¢ããã®ç¹å¾´æ½åº â» ã·ã¼ã³ã©ãã« â» å±æé åã®ã³ã¹ã â» ã·ã¼ã³å ¨ä½ã®ç¹å¾´ãã¯ã㫠⢠対象ããã®ç¹å¾´æ½åº â» éå»ã®ç§»åçµè·¯ï¼åã ⻠身ä½çå±æ§ ⻠対象ã®ç¹å¾´ãã¯ãã« Prediction ç¹å¾´æ½åº äºæ¸¬ ⢠ãã¤ãºã¢ãã« â» KF, DBN ⢠ã¨ãã«ã®ã¼æå°å â» Dijkstraâs Algorithm ⢠深層å¦ç¿ â» CNN, LSTM ⢠éå¼·åå¦ç¿ ⢠ãã®ä» â» Social force model, Data driven å ¥å â» åç»å â» éå»ã®çµè·¯ åºå â» åº§æ¨ â» ç¢ºçåå¸ 7. 7 çµè·¯äºæ¸¬ã®æµã ⢠ç°å¢ããã®ç¹å¾´æ½åº â» ã·ã¼ã³ã©ãã« â» å±æé åã®ã³ã¹ã â» ã·ã¼ã³å ¨ä½ã®ç¹å¾´ãã¯ã㫠⢠対象ããã®ç¹å¾´æ½åº â» éå»ã®ç§»åçµè·¯ï¼åã ⻠身ä½çå±æ§ ⻠対象ã®ç¹å¾´ãã¯ãã« äºæ¸¬ Prediction ç¹å¾´æ½åº
19æ¥ã«è¡ããã Kyoto.ãªãã #3 ã§çºè¡¨ã»ãã¢ãããã¦ããã ããå 容ã¾ã¨ãã§ãã ã¯ããã«: æ¤åºå¨ã®éè¦æ§ ã¢ã¤ãã«é¡èå¥ ããã£ã¨ãã£ã¦ããä¸ã§ãé¡ã®èå¥ã»åé¡(Classification)ã¯CNNã使ã£ã¦åºæ¥ã¦ããããã© ã¾ã ä¸æãåºæ¥ã¦ããªãå¥ã®ã¿ã¹ã¯ããã£ã¦ã ãããç»åå ããã®é¡é åã®æ¤åº (Detection, Localization)ã ãç»åå ã«åã£ã¦ãã人ç©ã誰ã§ãããããèå¥ããããã«ã¯ãã¾ãã¯ãã®ç»åã«åã£ã¦ãããé¡ããæ¤åºããå¿ è¦ãããã ãã®æ¤åºãããé¡ããããã«ã¤ãã¦åé¡å¨ã«ããã¦ããã®é¡ã¯ââãããããã®é¡ã¯ÃÃãããã¨åé¡ãã¦ãããã¨ã«ãªãããã§ã åé¡å¨ã«ä¸ããå ¥åç»åãåãæãã¦æ½åºããã®ã«ãã¾ãé¡é åãæ¤åºããå¿ è¦ããããããã®åé¡å¨ãå¦ç¿ãããããã®ãã¼ã¿ã»ããããæ§ã ãªç»åããé¡é åãæ¤åºãã¦åãæãã¦ããããã«å¯¾ãã¦ã©ãã«ä»ããã
This innocuous kitten photo, printed on a standard color printer, fools the classifier into thinking itâs a monitor or desktop computer regardless of how its zoomed or rotated. We expect further parameter tuning would also remove any human-visible artifacts. Out-of-the-box adversarial examples do fail under image transformations. Below, we show the same cat picture, adversarially perturbed to be i
ãã®è¨äºã§ã¯ãanimeface-characterãã¼ã¿ã»ããã使ã£ã¦Illustration2Vecã¢ãã«ãFine-tuningãã146種é¡ã®ãã£ã©ã¯ã¿ã¼é¡ç»åã90%以ä¸ã®ç²¾åº¦ã§åé¡ã§ããã¢ãã«ãè¨ç·´ããæé ã追ããªããã以ä¸ã®ãã¨ã説æãã¾ãã Chainerã使ã£ã¦ ãã¼ã¿ã»ãããªãã¸ã§ã¯ããä½ãæ¹æ³ ãã¼ã¿ã»ãããè¨ç·´ç¨ã»æ¤è¨¼ç¨ã«åå²ããæ¹æ³ è¨ç·´æ¸ã¿éã¿ãæã£ã¦ãã¦æ°ããã¿ã¹ã¯ã§Fine-tuningããæ¹æ³ ï¼ãã¾ãï¼ãã¼ã¿ã»ããã¯ã©ã¹ããã«ã¹ã¯ã©ããã§æ¸ãæ¹æ³ï¼ 使ç¨ããç°å¢ã¯ä»¥ä¸ã§ãã NVIDIA Pascal TITAN X Ubuntu 16.04 Python 3.6.3 使ç¨ããã©ã¤ãã©ãªã¯ä»¥ä¸ã§ãã Chainer >=2.0.1 (ææ°ã®4.1.0ã§ãåä½ç¢ºèªæ¸ã¿) CuPy >= 1.0.1 (ææ°ã®4.1.0ã§ãåä½ç¢ºèªæ¸ã¿) Pillow 4.0
#PaaSãµã¼ãã¹ã®ç°¡åãªèª¬æ åãã³ãã¼ã®æä¾ãµã¼ãã¹ã«ã¯äºãå¦ç¿ãããã¢ãã«ã®ç¿»è¨³ãç»åã»åç»èªèãªã©ãç¨æããã¦ãã¾ãã Google Cloud Platform Google社ãæä¾ããæ©æ¢°å¦ç¿ãã©ãããã©ã¼ã ã«ãªãã¾ãã ãµã¤ãºãåããããããããã¼ã¿ã®æ©æ¢°å¦ç¿ã¢ãã«ãç°¡åã«æ§ç¯ã§ããããã¼ã¸ã ãµã¼ãã¹ã§ãã ã¯ã©ã¦ãä¸ã«ç¨æãããTensorFlowã使ãã¾ãã â»ãµã¤ãããæç² æ©æ¢°å¦ç¿ã®å 容 ã»Cloud Machine Learning Engine æ師ããã®å帰ã»åé¡ãæ師ãªãã®ã¯ã©ã¹ã¿ãªã³ã°ãªã©ãã¾ãã¾ãªãã¼ã¿ããå¦ç¿ãã§ãã¾ãã 使ç¨ã¢ã«ã´ãªãºã ã¯éå ¬éã Azure Machine Learning Azure Machine Learning ã¯ãã¯ã©ã¦ãã®äºæ¸¬åæãµã¼ãã¹ã§ãããåæã½ãªã¥ã¼ã·ã§ã³ã¨ãã¦äºæ¸¬ã¢ãã«ãè¿ éã«ä½æãããããã¤ã§ããããã«ãã¾ã
æ©æ¢°å¦ç¿ããã¦ããã¨ãã交差ã¨ã³ãããã¼ãæå°åãããããã¨æãã¾ãã ã§ãå·éã«èããã¨äº¤å·®ã¨ã³ãããã¼ãä½ããããããã¾ããã§ããããããã¨ã³ãããã¼ããããã¾ããã§ããã 以ä¸ã®è¨äºãèªã¿ããã£ã¨ç¡çããªãä¾ã§çãã¾ã¨ãããã£ãã®ã§ããããã¯ãä¾ã«ç¡çããããé·ããªã£ã¦ãã¾ãã¾ãããåèæç® æ å ±çè«ãè¦è¦çã«ç解ãã (1/4) | ã³ã³ãã¥ã¼ã¿ãµã¤ã¨ã³ã¹ | POSTD æ å ±çè«ãè¦è¦çã«ç解ãã (2/4) | ã³ã³ãã¥ã¼ã¿ãµã¤ã¨ã³ã¹ | POSTD æ å ±çè«ãè¦è¦çã«ç解ãã (3/4) | ã³ã³ãã¥ã¼ã¿ãµã¤ã¨ã³ã¹ | POSTD æ å ±çè«ãè¦è¦çã«ç解ãã (4/4) | ã³ã³ãã¥ã¼ã¿ãµã¤ã¨ã³ã¹ | POSTD ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ã¨æ·±å±¤å¦ç¿ 以ä¸ã¯ãããè¨äºã®å£åã¢ã¬ã³ã¸ã§ãã Aå½ãBå½ãCå½ãããã¾ãã Aå½ã§ã¯ãä¸æ¥ã®å¤©æ°ã¯25%ãã¤ã®ç¢ºçã§æ´ããæããé¨ãéªã«ãª
çµè« ä¸è¨4ã¤ããªã¹ã¹ã¡ä¸ããé ã«è¦ã¦ããäºããªã¹ã¹ã¡ãã¾ãã ã4æ¥ã§ä½é¨ã TensorFlow x Python 3 ã§å¦ã¶ãã£ã¼ãã©ã¼ãã³ã°å ¥é ã¿ããªã®AIè¬åº§ ã¼ãããPythonã§å¦ã¶äººå·¥ç¥è½ã¨æ©æ¢°å¦ç¿ ã¼ãããä½ããã¥ã¼ã©ã«ãããã¯ã¼ã¯ãPython 3 + NumPyã§ããã¯ãããããå¾¹åºãã¹ã¿ã¼ã ã¢ããªã±ã¼ã·ã§ã³éçºè ã®ããã®æ©æ¢°å¦ç¿å®è·µè¬åº§ 大åæ ãã®è¨äºãæ¸ãã¦ã人 æ¬è· Railsãµã¼ãã¼ã¨ã³ã¸ãã¢ï¼iphoneã¢ã㪠ããã°ã©ãã§ãããï¼ ä¸ååã°ãä¸åæ³éãã¦ããããã°ã©ãã«ãªã£ãã å¤ãã種ã¨ãçªç¶å¤ç°ã¨è¨ããã¦ãã ä»å¾ã¯æ¯è¼ççæéï¼ä¸å¹´ä½ï¼ã§ãã¼ã¿ãµã¤ã¨ã³ãã£ã¹ãã«ãªã ãããªã給æã¢ãããä¼ãã§ããã æ³å®ãã¦ããèªè æ©æ¢°å¦ç¿ã ãã§ãªãããã°ã©ãã³ã°èªä½ãåå¿è ã«åãã¦ãã¾ãã åç½®ã Udemyã¨åç»å¦ç¿ã«ã¤ã㦠Udemyã¨ã¯ï¼ Udemy
ããã«ã¡ã¯ãã¹ãã¼ããã¥ã¼ã¹ã®å¾³æ°¸ã§ãã深層å¦ç¿æ¥çã¯GANã ã¨ã深層強åå¦ç¿ã ã¨ãã§çãä¸ãã£ã¦ãã¾ãããä»æ¥ã¯æ·¡ã ã¨ãã¹ãã¼ã¹ãªãã¥ã¼ã©ã«ãããã¯ã¼ã¯ã®è©±ããã¾ãã è¦ç´ãã㨠ãã¥ã¼ã©ã«ãããã®ã¹ãã¼ã¹åã«ãã£ã¦ã精度ã¯ã»ã¨ãã©ç ç²ã«ããã«ãè¨ç®å¹çã¯3ã5åç¨åº¦ã¾ã§åä¸ã§ãã ã¹ãã¼ã¹åã«ã¯ã¾ã 課é¡ãå¤ãããã¥ã¼ã©ã«ãããã®é«éåã¨ããæå³ã§ã¯ã次ã®æ¦å ´ã¯ãã¶ãããã«ãªã ã¹ãã¼ã¹ã¨ã¯ãã¹ãã¼ã¹åã¨ã¯ ã¹ãã¼ã¹ã§ããã¨ã¯ãå¤ã®ã»ã¨ãã©ã0ã§ãããã¨ã§ããä¾ãã°ããã¯ãã«$a,b$ã®å ç©ãè¨ç®ããéã«ã$a$ã®ã»ã¨ãã©ã®è¦ç´ ã®å¤ã0ã§ããã¨ãã¾ãããã0ã«ãªã«ãããã¦ã0ã§ãããã$a$ã®å¤ã0ã§ãªã次å ã«ã¤ãã¦ã®ã¿ã$a_i b_i$ã®å¤ãè¨ç®ãã¦è¶³ãåãããã°ããããã§ãããã®ããã«ãå ç©ãè¨ç®ããéã«ãã©ã¡ããã®ãã¯ãã«ãã¹ãã¼ã¹ã§ããã°è¨ç®ãé«éåã§ãã¾ãã0ã¨ããå¤ãã¡ã¢ãª
ãã¤ãããã¾ã§ãï¼ä»åã¯ã¿ã¤ãã«ã®éãï¼ãã¤ãºå¦ç¿ãåå¼·ããä¸ã§åèã«ãªãæç§æ¸ãã¦ã§ãã®è³æï¼è«æçãç´¹ä»ãããã¨æãã¾ãï¼ ãã¤ãºå¦ç¿ã¯ç¢ºçæ¨è«ã«åºã¥ããæ©æ¢°å¦ç¿ã¢ã«ã´ãªãºã ã®æ§ç¯è«ã§ãï¼ãã¤ãºå¦ç¿ã使ãã°ï¼ããããå½¢å¼ã®ãã¼ã¿ã«å¯¾ãã¦ï¼æªè¦³æ¸¬å¤ã®äºæ¸¬ãé ããæ§é ãçºè¦ããããã®çµ±ä¸çãªã¢ããã¼ããã¨ããã¨ãã§ããããï¼ç¹ã«ç¾ä»£ã®æ©æ¢°å¦ç¿ã¢ã«ã´ãªãºã ãæ·±ãç解ã使ãããªãããã«ã¯å¿ é ã®æ¹æ³è«ã«ãªã£ã¦ãã¾ãï¼ ï¼ï¼ããã¤ãºå¦ç¿ã®ä½ç½®ã¥ã ã¾ãï¼ãã¼ã¿ãµã¤ã¨ã³ã¹ã«ãããä»ã®æ¹æ³è«ã¨ï¼ãã¤ãºå¦ç¿ã®ä½ç½®ã¥ããç°¡åã«ä¿¯ç°ãããã¨æãã¾ãï¼ åã®ç¥ãéãï¼ãã¤ãºå¦ç¿ã¯1990年代ããããç»å ´ãã¦ããæ©æ¢°å¦ç¿ã®æ¹æ³è«ã§ï¼æ¢åã®å¦ç¿ã¢ã«ã´ãªãºã ã確çã¢ãã«ã«ãã£ã¦æ§ç¯ãï¼å¦ç¿ãäºæ¸¬ã®è¨ç®ããã¹ã¦ç¢ºçæ¨è«ï¼æ¡ä»¶ä»ãåå¸ã¨å¨è¾ºåå¸ã®è¨ç®ï¼ã§è§£æ±ºãã¦ãã¾ããã¨ãã試ã¿ã«ãã£ã¦ã¯ãã¾ãã¾ããï¼ããã«ããï¼å¾æ¥
ã¯ããã¾ãã¦ãABEJAã§Researcherããããã¦ããã ãã¦ããç½å·ã§ãã å æ¥ãååç©ã®ç©æ§æ¨å®ãDeep Learningãã¤ãã£ã¦å¾æ¥ææ³ãã300,000åé«éã«å¦çããã¨ããè«æãã§ã¾ããï¼[1], [2]ï¼ããã®è«æã®ææ³ã¯ãGraph Convolutionã¨ããã°ã©ãä¸ã«å®ç¾©ãããConvolutionæ¼ç®ããã¼ã¹ã¨ãªã£ã¦ãã¾ããç©æ§æ¨å®ã«éãããã°ã©ã解æå ¨è¬ã Deep Learning ã§ä¸æã«ããªããããã«ãªãã°ãDeep Learningã®ã¢ããªã±ã¼ã·ã§ã³ã®å¹ ããã£ã¨æ¡ããããããªãã¤ããã¼ã·ã§ã³ãèµ·ããããªäºæããã¾ãã ICMLãNIPSãªã©ã®æ©æ¢°å¦ç¿ç³»ã®ä¸»è¦å½éä¼è°ã§ãæ°å¹´åããGraph Convolutionã«ã¤ãã¦ã®è«æãã¡ãã»ãåºç¾ãã¯ããã¦ãããã¨ãã«æè¿ãã®å¢ããå¢ãã¦ãã¦ããå°è±¡ãããã¾ããå人çã«ãæè¿ï¼åããï¼ï¼ã«ããã«ã°ã©ãã¥ãã¦ã
(Photo credit: https://pixabay.com/en/books-door-entrance-italy-colors-1655783/) ãã®è¨äºã¯ä¸æ¨å¹´ã®ãã®æ¸ç±ç´¹ä»è¨äºã®ã¢ãããã¼ãçã§ãã ç¸å¤ãããæ¯æã®ããã«æ°åæ¸ãåºç¶ãããã¼ã¿åææ¥çã§ãããè¯ãæ¬ãå¢ãç¶ãã¦ããããã§ã¤ãã«åç´è åãã¯6åãä¸ç´è åãã¯ä½ã¨15åã«ã¾ã§è¨ãä¸ãã£ã¦ãã¾ãã¾ããï¼æ±ï¼ãã¨ããããèªåã®ã¨ããã«ã¢ãã£ãªã¨ã¤ãã®é¡ã¯ä¸éãå ¥ããªãã«ãããããã*1æ²ããã«æ¸ç±ç´¹ä»ããããã¨æãã¾ãã ããæåã«æã£ã¦ããã¾ããåã®ç¥èã¬ãã«ã¯æ¥µãã¦é©å½ãªã®ã§ã極ãã¦ããå æ¸ãªãã¨ãæ¸ãã¦ããå¯è½æ§ãããã¾ããã¾ãæåã«èªãã§ããæéãçµã£ã¦ãã¦è¨æ¶ããããµããªããã§ãå 容ã«é¢ããè¨è¿°ãä¸æ£ç¢ºãªæ¸è©ãæ··ãã£ã¦ããå¯è½æ§ãããã¾ãã誤ã£ã¦ããã¨ãããããããã¨ããããã£ãããã³ãã³çªã£è¾¼ãã§ã
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}