注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています
はじめまして。ABEJAでResearcherをやらせていただいている白川です。 先日、化合物の物性推定をDeep Le... はじめまして。ABEJAでResearcherをやらせていただいている白川です。 先日、化合物の物性推定をDeep Learningをつかって従来手法より300,000倍高速に処理するという論文がでました([1], [2])。この論文の手法は、Graph Convolutionというグラフ上に定義されたConvolution演算がベースとなっています。物性推定に限らず、グラフ解析全般を Deep Learning で上手にこなせるようになれば、Deep Learningのアプリケーションの幅がぐっと拡がり、さらなるイノベーションが起きそうな予感がします。 ICMLやNIPSなどの機械学習系の主要国際会議でも数年前からGraph Convolutionについての論文がちらほら出現しはじめており、とくに最近その勢いが増してきている印象があります。個人的にも最近(前から?)にわかにグラフづいてい
2017/04/27 リンク