* ãã®æç¨¿ã¯ç±³å½æé 10 æ 12 æ¥ã«æç¨¿ããããã®ï¼æç¨¿ã¯ãã¡ãï¼ã®æè¨³ã§ãã Postesd by Google Cloud ãããããã¼ ã¢ããã±ã¤ã ä½è¤ä¸æ² ä»å¹´ã¯ã¾ã¨ã¾ã£ãå¤ä¼ã¿ãåããã®ã§ãæ¯åã¨ãã£ããã«ä½ããèªç±ç ç©¶ã®ã¢ã¤ãã£ã¢ãæ¢ãã¦ãã¾ãããçµæãã§ãããã£ãã®ããTensorFlow ã§ä½ã£ããããããããã·ã³ãã§ãã ãã®åç»ã®éããæè¢ã«ä»ããã»ã³ãµã¼ã使ã£ã¦ã°ã¼ããã§ãããã¼ã®ãããããå¤å®ããããã«è² ããªãæãåºããã·ã³ã§ããåç´ãªããã¡ãã§ã¯ããã¾ãããé ãå³ã¨ãã¦TensorFlowã使ãã¾ãããTensorFlowã§ã¨ã¦ãç°¡åãªæ©æ¢°å¦ç¿ï¼MLï¼ã®ã¢ãã«ã使ããæè¢ã«ã¤ãªãã Arduino ãã¤ã¯ãã³ã³ããã¼ã©ã§ãããå©ç¨ãã¦æã®å½¢ãèªã¿åãä»çµã¿ã§ããML ã便å©ãªãã¼ã«ã¨ãã¦ä½¿ããã¨ã§ãé¢åãããããªããã°ã©ãã¼ã®ç§ã§ãæè»ãã¤æ£ç¢ºã§ãã£ã
ä»åã¯ããã³ã½ã«ã¨ã¯ä½ãããªããã³ã½ã«ã¨ããæ¦å¿µãå¿ è¦ã¨ãªãã®ããã«ã¤ãã¦èãããã¨æãã¾ãã äºåçèå¯ ãã³ã½ã«ã¨ã¯ä½ãã¨ããåãã«ã¤ãã¦ã身è¿ãªä¾ã§ããå転éåãç´ æã«ãã¦èãã¦ããããã¨æãã¾ãã髿 ¡ã大å¦ã§ç©çãå¦ãã æ¹ã§ããã°è§éåéãåã®ã¢ã¼ã¡ã³ãçã®è¨èããåãããããã¾ããããããã§ã¯ãããã®å®ç¾©ã天ä¸ãã«ä¸ãããã¨ãªããçµé¨çãªäºå®ãææããã«å®å¼åãã¦ããã¾ã*1ã ã¯ããã«ç¶æ³è¨å®ããã¾ããããå転軸ããä½ç¨ç¹ã¾ã§ã®ä½ç½®ãã¯ãã«ã ã¨ããä½ç¨ç¹ã«å ãæãã£ã¦ããã¨ãã¾ããã¦ãã®åçãæãåºãã¨ãå転ã«é¢ããå½±é¿åã¯ä½ç¨ç¹ã¾ã§ã®è·é¢ã¨ä½ç¨ç¹ã«æããåã®åæ¹ã«æ¯ä¾ãã¦ãã¾ããå¾ã£ã¦ãã®å½±é¿åã ã¨è¡¨ãã¨ãã ã¯æ¬¡ã®æ§è³ªãæºãããã¨ãæå¾ ããã¾ãã , , . ä¸è¨ã®æ§è³ªï¼ã«ãã㦠㨠ã®éã§è¶³ãç®ãåºæ¥ãããæ§è³ªï¼ã§ ã宿°åããããã¦ãã¾ããããããã®æ¼ç®ãåºæ¥ãã
大å¦ã®çå¦é¨ï¼æ°ç©ç³»ï¼ãå·¥å¦é¨ãªã©ã®åºèº«è ã§ããã°ããã³ã½ã«ã¨ããè¨èãå°ãªãã¦ãï¼åº¦ã¯è³ã«ãããã¨ãããã¨æãã¾ããéè¦ãªæ¦å¿µã«ãé¢ããããã©ããã¦ãã³ã½ã«ã¯çè§£ãããªãã®ãããã®åå ã«ã¤ãã¦èãã¦ã¿ããã¨æãã¾ãã ãããããªãã³ã½ã« ãã³ã½ã«ã¨æåã«åºä¼ãã®ã¯ãå ¨å¦å ±éç§ç®ï¼æã§ããæé¤ç§ç®ï¼ã®åå¦ã«ç»å ´ããæ £æ§ã¢ã¼ã¡ã³ããã³ã½ã«ãããã§ããããå°éå¦é¨ï¼çå¦é¨ã®ç©çå¦ç§ãå·¥å¦é¨ï¼ã«é²ãã¨ãé»ç£æ°å¦ã®é»ç£å ´ãã³ã½ã«ãé£ç¶ä½åå¦ãæ§é åå¦ã®å¿åãã³ã½ã«ãä¸è¬ç¸å¯¾è«ã®ã¢ã¤ã³ã·ã¥ã¿ã¤ã³ãã³ã½ã«ãå ´ã®éåè«ã®ãã½ã³ãã©ãã¯ç©ºéããã§ã«ããªã³ãã©ãã¯ç©ºéã¨è³ãæã«ç»å ´ãã¾ããæ°å¦ã§ã¯ä»£æ°å¦ãå¹¾ä½å¦ãè§£æå¦ãåéãåããç»å ´ãã¾ããçµ±è¨å¦ã§ã夿¬¡å ã®ç¢ºç夿°ã®ã¢ã¼ã¡ã³ã*1ãå®ç¾©ããã®ã«å¿ è¦ã¨ãªãã¾ããã¾ãæè¿ã§ã¯æ©æ¢°å¦ç¿ã®åéã§ãè¦ãããããã«ãªãã¾ããã ãã®ããã«å «é¢å èã®å¤§æ´»èºããããã³
Tensors or {\em multi-way arrays} are functions of three or more indices $(i,j,k,\cdots)$ -- similar to matrices (two-way arrays), which are functions of two indices $(r,c)$ for (row,column). Tensors have a rich history, stretching over almost a century, and touching upon numerous disciplines; but they have only recently become ubiquitous in signal and data analytics at the confluence of signal pr
(-) ã©ããªæ¬ï¼ åå¿ æ£èª¤è¡¨ ããå稿 GIFã¢ãã¡ã§è¦ãç·å½¢ä»£æ° ãã¦ã³ãã¼ã ⦠ã¢ãã¡ã¼ã·ã§ã³ããã°ã©ã æ¹è¯ç, FlashScript Windowsã§æ¸ç±ã®ã¢ãã¡ã¼ã·ã§ã³ãå®è¡ããã ãªãã§ã ⦠ã¨ããããæ²ç¤ºæ¿ ç å ´ ⦠編éã®ç·´ç¿ ãªã³ã¯ â å ¬å¼ãã¼ã¸ã¸ ⦠è¡åæ¼ç®ãç°¡æã¢ãã¡ã¼ã·ã§ã³ã®å¦ç¿ç¨ Ruby ã³ã¼ããæä¾ããã¦ãã¾ã â ã¢ãã¡ã¼ã·ã§ã³ã§è¦ãç·å½¢ä»£æ° ⦠ã¢ãã¡ã¼ã·ã§ã³ã®å®ä¾ â Macã§ã®ã¢ãã¡ã¼ã·ã§ã³å®è¡æé ⦠thx! â ãã³ãã³çµæ²ãç·å½¢ä»£æ°ããæã£ã¦ã¿ãï¼å¥³æå¸«ããã§ã¯ããã¾ããï¼ â¦ 1/3 ããããæ¬æ¸ãã? â åºæ¬å¤å½¢ããºã« ⦠ã¤ã³ã¿ã©ã¯ãã£ãææ â è¡åã§ã¢ãã¡ã¼ã·ã§ã³ ⦠ã¤ã³ã¿ã©ã¯ãã£ãææ â å§å¦¹ç·¨ãããã°ã©ãã³ã°ã®ããã®ç¢ºççµ±è¨ã â ç工系ããã¥ã¡ã³ãå°é GOLDEN-LUCKY â¦ æ¬æ¸ãä¼ç»è£½ä½ããç·¨éè ãã
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ã¡ã³ããã³ã¹
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}