æ°å¦ã£ã¦å½¹ã«ç«ã¤ã®ï¼ã«å¯¾ãã試è«
Â
ä¸å¦ãé«æ ¡ã§ãï¼æ¬¡æ¹ç¨å¼ãã確çãã対æ°é¢æ°ããå¦ãã§ãããã©ããããªãã¨å¦ãã§æå³ãããã®ï¼ããä¼ç¤¾ã«å ¥ãããã®ã¹ãã«ã»ããã¨ããç¸æã説å¾ããããã®è©±æ³ã¨ããå®å¦ãå¦ãã ã»ããããããããªãã®ï¼
Â
Â
æ確ã«ã¯è¡¨æããªãã ãã§ãæ°å¦ãè¦æãªäººã¯èª°ããä¸è¨ã®ãããªææ ¨ãæ±ãã¦ããã
Â
代æ¿æ¡ã¨ãã¦æ示ãããéå ·ãå½¹ç«ã¤ãã¨ã¯èªããä¸ã§ãã¾ãæ°å¦ãæããã¦èª°ãããå¦ã¶ã¹ããã®ãï¼ã¨ããä¾çµ¦ã¨éè¦ã®ãã¹ããããèªããä¸ã§ã
Â
ãããããã§ãæ°å¦ã¯å½¹ã«ç«ã¤ã
Â
ã©ã®ããã«å½¹ç«ã¤ã®ãã
Â
Â
ãã®ä¾ã¨ãã¦ã¯ãããããå¹¾ä½å¦ãæãç´å¾ããããã
Â
ãã®ä¸çã«æ®ãã誰ããããç´ç· straight lines ãå¹³é¢ planes ã¨ãããã®ãè¦ããã¨ããããè¡ã«å¼µãå·¡ããããé»ç·ãã¿ã¤ã«ã®æ¨¡æ§ãã¹ã¿ã¼ããã¯ã¹ã§ã³ã¼ãã¼ãç½®ãæºã®è¡¨é¢ surfaces ãããã¾ããªãããã®è¨äºãèªãã§ããé»åæ å ±åªä½ã®ç»é¢ screens ã¯ã(æ°å¦çãªå®å¼åããã¦ãã¾ãã¨å³å¯ã«ã¯éãã®ã ã) æ°å¦ã§åºã¦ããç´ç·ãå¹³é¢ã«ã¨ã¦ãä¼¼ã¦ããã
Â
ã©ããã¦ã ããï¼
Â
æ´å²çãªçµç·¯ã¯ç¥ããªãããããã¾ã§ã®åã®èãã話ãç·åããã«ãããã¯æ°å¦ã§ä½¿ãããç´ç· straight lines ãå¹³é¢ planes ã¨ãããæèããããã®åä½ããããã¨ãã¨ç§éã身ã®åãã§è¦ã¦ãããããªç©ä½ã®æ§è³ªãæ´çãã¦ææ§ããªãè¿°ã¹ããã®ã ãããã¨ãããã¨ãªã®ã ã¨æãã
Â
Â
ã¨ã¦ãé »ç¹ã«è¦ããã®ã ãããããç¥ã£ã¦ããã
ããç¥ã£ã¦ãããã®ã«ä¼¼ã¦ãããããç¥ããªããã®ã§ããé¡æ¨ãèãããç·å½¢ä»£æ° linear algebra ã§ã¯ç·å½¢æ§ linearity ãæ±ããã¨èããã¨ãããã¨ãããªããã¾ã£ããç·å½¢ä»£æ°ãç·å½¢æ§ãç¥ããªãã¦ããããã¶ãç´ç·ã¿ãããªãã®ãæ±ãããããªãããªï¼ãã¨ä½ã¨ãªãæ¨æ¸¬ã§ããã
Â
æ°å¦ãå½¹ç«ã¤ã®ã¯ããã®ãä½ã¨ãªãæ¨æ¸¬ã§ãããã®éã¨è³ªãä¸ãããã¨ãã§ããã»ã¼å¯ä¸ã®ãã¼ã«ã ããã§ããã
ããªãã¡ãå½¢å¼çãªãã¨ã«å¯¾ããç´è¦³ãããç²¾å¯ãã¤æ£ç¢ºã«ããããã«ã¯ããä½ã¨ãªããä¼¼ã¦ããã®ã§ã¯ãã¡ã§ããåãããªã®ããéããã®ããã誤ããªãç©ã¿ä¸ãã¦ããå¿ è¦ãããã
Â
ããã«è¸ã¿è¾¼ãã°ããã£ã¨åãæé ãç¶ãã¦ããã°åãã«ãªãããã(極éã極éå¤)ããéãããã©ãå°æ°ç¬¬ ããã£ã©ã© ä½ ã¾ã§ã¯åããï¼è¿ä¼¼ãç·å½¢è¿ä¼¼ï¼ã¨è¨ã£ããç¾ä»£ã®æ°å¦ã®ä¸»åï¼æç§æ¸ã§ã¯å¤§é»æ± mainstaysã¨è¡¨ç¾ããããã¨ãããï¼ã¨ãªã£ã¦ããæ¦å¿µã«è¾¿ãçãã¦ããã
Â
ãããã使ãã¨ããã¨ãã°ãããé販ã®ã¦ã¼ã¶ã¼ã®ä¸äººãããè³¼å ¥é¡ãã50000åã¾ã§ã¯ã¾ã£ããã§ããã®ãã¨ã¯æ²ãã£ã¦ãããã¨ããã¬ã³ã®æ²»çè¬ã使ã£ãã¨ãã®ä½å½ããåå¹´ã¾ã§ã¯å¹´é½¢ã«å¯¾ãã¦ç·å½¢ã«æ¯ä¾ãã¦ï¼ã¾ã£ããã§ï¼ããã®å¾ã¯ãã©ãããããï¼å¥ã®è¦å ã«å¯¾ãã¦æ¯ä¾ãã¦ãã¦ããããè¨ç®å¼ã«å ¥ã£ã¦ããªãã®ãããããªãï¼ãã¨ãè¨ã£ãç¥èãç´è¦³ãé¤ããããã¨ã«ãªãã
Â
ãããã¯ãç¾å®ã®ã¹ã£ã¨ãã¨ãããã¼ã¿ã®æ¹ã§ã¯ãªããããã«ç´ç²ãªå½¢å¼ã®ã»ãã«è¸ã¿è¾¼ãã§ããã°ããåã¯éåºé(0,1)ã¨åç¸ã§ããã(ä½ç¸å¹¾ä½å¦)ã¨ãããå¤æ§ä½ã®ããã§ã¯å±æçã«(ç§éãç©ççã«åå¨ãã¦ãããããª)ã¦ã¼ã¯ãªãã空éã§ãããã¨ããã£ã話ã«ãªã£ã¦ããã
Â
ãããã®è©±ã¯ãæåã¯ã¾ãã§æ°åéã³ã®ããã«èããããããããªãããæè¿ã®å®ä¸çã¸ã®æ°å¦ã®å¿ç¨ä¾ã¯ããããã¸ãã®ç´ç²æ°å¦ãå®ã¯ç§éã®å¨ãã«ç¾ãã¦ãããã¼ã¿ããã¾ã説æããï¼è¤éãªãã¼ã¿ããç´è¦³ã«æ²¿ããããªèª¬æã«è¦ç´(è¿ä¼¼)ã§ããï¼ã¿ããã ãã¨ããçºè¦ã«æºã¡ããµãã¦ããã
Â
ãã¨ãã°ä¸çã«ã¯ã¤ããç 究ããã£ã¦ãStanford大å¦ã®æ°å¦è Gunnar Carlsonã2009å¹´ã«åºããè«æã«ããã¨ã
Â
ããã¸ã«ã¡ã§æ®å½±ãã大éã®ã¢ãã¯ãåçã«ã¤ãã¦ã9ãã¯ã»ã«(ç»ç´ ãããªãã¡ç»åã®æãç´°ããªè¨é²åä½)ãã¨ã®æããã®å¤ã9次å ãã¯ãã«ã¨ãã¦ãã®ãã¯ãã«ã®åå¨ããä½ç½®ãããã¼ã¿å ã«ç¾ããå ¨ã¦ã®9ãã¯ã»ã«ã«ã¤ãã¦ã¨ãã¨ããããã®ç¹ã¯8次å 空éä¸ã®7次å æ¥å(7-dimensional ellipsoid)ã®å½¢ã«ãªãã
Â
ã¨ãããã¨ãåãã£ã¦ããããã*1ã
Â
æ¥åã¨è¨ã£ãããåããã¢ã¡ãããã©ã°ãã¼ãè¦ããã®ãã¼ã«ã ã£ãããé§ ã«å ¥ã£ãã´ã£ã»ãã»ãã©ã³ã¹ã®ãã©ã³ã¹ãã³ããæ¨æå±ã®ããã±ãã§ã馴æã¿ã®ããã¡ã ã
Â
ãã¸ã«ã¡ã®ç»åãæ§æãã¦ããåä½ãã8次å 空éä¸ã®ãã©ã³ã¹ãã³ããåããããã±ããããã ã£ããªãã¦ããã£ã¨1900年代以åã®äººéã¯èª°ãç¥ããªãã£ãã«éããªã*2ã
Â
Â
ããã¾ã§ã®è©±ãèªãã§ããæ¹ã ã¯æã£ã¦ãããã¨ã ããã
Â
Â
ããããé£ãã話ããã¦èª¤éåããªãã
çµå±ãããã¯ãªãã®å½¹ã«ç«ã¤ã®ï¼ã
Â
Â
æ£ç´ãæ°å¦ã®ã¢ããªã±ã¼ã·ã§ã³ãäºæ¸¬ãããã¨ã¯ã¡ãã£ã¯ãã£é£ããããã æ¢ã«ãä¿¡ããããªããããªå¿ç¨ä¾ã¯æ¨¡ç´¢ããã¦ããããã¨ãã°2015å¹´ã®5æã«MITãåºãããã®è«æã§ã¯ãè¦ç´ããã°2次å ç»åã¨ãã¦è¨é²ããã人éã®é¡ã«å¯¾ãã¦ããã£ã¨æããé¡ã«ãã¦ãã¨ãããããããé¡ãä¸ã«ãã¦ãã¨ããã¨ã³ãåãã¦ãã¨è¨ãã¨ããã®ãããªå¤æãæ½ããé¡ã®ç»åãçæã§ããã¨ããéæ³ã¿ãããªæ¹æ³ãå ±åããã¦ããã
Â
è«æä¸ã«è¼ã£ã¦ãããå®éã«çæãããç»åãè¦ãã°ã¾ã ã¾ã åºç¤ã®éä¸æ®µéã§ãããã¨ã¯æ確ã ããããã«ãã¦ãçºæ³ãã¤ãããããã¤ããªã¢ã«ã«ã±ã¢ã«ã¨ããµã³ãã¬ãå±ãããã¨ãå§ãã¦ããããã
Â
ä»®ã«ãã®å¤æ精度ã人éãç®ã§è¦ã¦ãå¤å¥ã§ããªãã¬ãã«ã¾ã§ä¸ãã£ãã¨ããããä¾ãã°éååçãåã£ã¦ãã·ã£ãã¿ã¼æã«ç®ãã¤ã¶ã£ã¦ãã¾ã£ã3åç®ã®å½¼ã®ç®ãéãã¦ãã¨ãè¨ãã¨ãæ¬å½ã«ç®ãéããåçãã§ããããã«ãªãã®ãããããªãã
Â
ãããããã¨ãã7次å ä¸ã®æ¥åãã³ãã³ããããã¨ã§å®ç¾ããããã¨ãã¦ããã®ãã究極ã«ã¯æ°å¦ã ã¨åã¯æã£ã¦ããï¼åè«ã¯åãä»ãã¾ãï¼ã
Â
Â
 ãã®ãããªæ°å¦ã®ãå¼·åããã¯ä¸è¬ã«ãã¾ãç¥ããã¦ããªãï¼è¨ã£ã¦ãã¾ãã°ãä¸å¦é«æ ¡ã®å çãæãã¦ãããªãï¼ã
Â
Â
ã ãã人ã ã¯ãã¨ã«ãªã£ã¦è¨ãã®ã§ããã
ã大å¦æ代ã«ç·å½¢ä»£æ°ã¨çµ±è¨ããã£ã¦ããã°è¯ãã£ãããã¨ã
Â
Â
Â
Â
å¯ç¨¿è¨äºã®ããã«100人以ä¸ã®å¤§å¦é¢ççã«ã¢ã³ã±ã¼ããåã£ãã®ã ãããã®ãã¡ã®ããã¨ã«ãªã£ã¦å¿
è¦æ§ãå®æããç§ç®ãã¨ããè¨åã§ãç·å½¢ä»£æ°ã¨çµ±è¨ã¯ãããã¯ã©ã¹ã ã£ãã大å¦çå½æã®èªåã«ãèãããã話ã https://t.co/mkrZgaLICo
â 1T0T akay uki (@1T0T) 2015, 4æ 24
Â
Â
Â
Â