次å ã®åªãããããã¯ããµã¯ãµã¯ã¡ãã³ãã³åé¡ã
è¶ çã®ä½ç©ãããªãã¡å¤æ¬¡å 空éã«ãããçã¯ãä¸è¬çã«ç§ãã¡ã観測ããï¼æ¬¡å ã®çä½ã®ä½ç©ã¨ã¯é¥ãã«ç°è³ªãªæ§è³ªã示ãããããÂ
Â
æ©æ¢°å¦ç¿ã®æåãªæç§æ¸ã«ããã°ã
 Our geometrical intuitions, formed through a life spent in a space of three dimensions, can fail badly when we consider spaces of higher dimensionality.
æ訳ï¼ãæã ã®å¹¾ä½å¦ã«é¢ããç´è¦³ã¯ãï¼æ¬¡å 空éã®ä¸ã§éããã人çã®ä¸ã§å½¢æããããã®ã ããé«æ¬¡å 空éãèããã¨ãã«ã¯ãã¾ãã§å½¹ç«ããªããã¨ãããã
("ãã¿ã¼ã³èªèã¨æ©æ¢°å¦ç¿ ä¸", åæ¸, p.36)
Â
... in spaces of high dimensionality, most of the volume of a sphere is concentrated in a thin shell near the surface!
æ訳ï¼ã...(ä¸ç¥)... é«æ¬¡å 空éã«ããã¦ã¯ãçã®ä½ç©ã®ã»ã¨ãã©ããç表é¢è¿ãã®èããæ®»ãã«éä¸ãã¦ããã®ã ï¼
(åæ¸ï¼ p.36)
Â
ã¨ã®ãã¨ã§ãããä¸è¬çã«ã¯ã次å ã®åªããã¨å¼ã°ããç¾è±¡ã *1ã
Â
Â
Â
Â
ããã¦ãå æ¥ãã®ãæ®»ãã«ã¤ãã¦ã身æ¶ããã»ã©é®®çãªã¤ã¡ã¼ã¸ãä¸ããå ·ä½ä¾ããã¤ãã¿ã¼ä¸ã§è¦³æ¸¬ãããÂ
Â
Â
Â
çãå¤æ¬¡å
空éã«é£ã°ããè¶
çé¢ã§ãã»ã¼ãã¹ã¦ã®é¢ç©ã表é¢ã«è¿ãã¨ããã«éã¾ããããè¶
ã·ã¥ã¼ã¯ãªã¼ã ã¯ã»ã¼ãã³ã°ããã§ä¸å³ãã¦ãè¶
ã¡ãã³ãã³ã¯ã»ã¼ãµã¯ãµã¯ã®ç®ã§é常ã«ç¾å³ãã¨ããä¸ç´ã®å¤§çºè¦ã @mima_tea ãããä»æ¥ã®è¼ªè¬ã§æ«é²ãã¦ãããã
â Graham Neubig (@neubig) 2015, 4æ 20
Â
Â
ã¡ãã³ãã³ã®ç®ã
Â
Â
確ãã«ã¡ãã³ãã³ã®ç®ã¯ãï¼æ¬¡å 空éã§ã¯é常ã«èã£ãºããªãã®ã§ãããªããããããã®ã¡ãã³ãã³ã®ç®ã®ä½ç©ã¯ï½ä¹ã«æ¯ä¾ãã¦å¢å ãã¦ãããããï½æ¬¡å 空éã§ã¯ç®ãã¡ãã³ãã³ã®å¤§åãå ãããã¨ã«ãªãã
Â
ãªãã¨ãããã¨ã ãè¶ çã¨ã¯ã¡ãã³ãã³ã®ãã¨ã§ãã£ãã®ã ã
Â
ããããèå¿ã®ãã®å大ãªäºå®ã«é¢ããçºè¦è ã¯ã
Â
Â
ã°ã©ã å
çã®ãè¶
ã¡ãã³ãã³ãã®ãã¤ã¼ãã輪è¬ã ã¨ããã¾ãåããªãã£ãã®ã«Twitterã ã¨å¾®å¦ã«ä¼¸ã³ã¦ã¦ä¸ã®ä¸ä½ãèµ·ãã¦ãããããããªããç解ä¸è½ãæãã
â ã¿ã¾ãã£ã¼ (@mima_tea) 2015, 4æ 22
Â
Â
ã¨è¨ã£ãããã«ãèªèº«ã®çºè¦ãããã«ç´ æ´ããã価å¤ã®ãããã®ã§ããããããã«è¦åã£ãè³è³ãåãã¦ããªãã
Â
Â
ããã§ã¯ãï¼ mima_teaæ°ã®çºè¦ãããã«ã´ã£ã´ã£ãããªãã®ã§ãããããRè¨èªã«ããå¯è¦åãç¨ãã¦è¡¨ç¾ãã¦ã¿ãããä½æããã³ã¼ãã¯è¨äºã®æ«å°¾ã«æ²è¼ããã®ã§ãå ã«åºåç»åããç´¹ä»ãã¦ããã
Â
Â
Â
ã¾ãã¯ãï¼æ¬¡å 空éã«ããã¦ãæã ãæ®æ®µç®ã«ãã¦ããã¡ãã³ãã³ã§ããã
Â
Â
Â
Â
Â
Â
Â
Â
ãããã¡ãã³ãã³ã ã
Â
Â
å·¦å³ã§ã¯ãè¶è²ãï½æ¬¡å 空éï¼ããã§ã¯ï½ï¼ï¼ï¼ã«ãããç®ã®ä½ç©ã«ãé»è²ãã¢ãã¢ãé¨åã®ä½ç©ã«å¯¾å¿ããããã«é¢ç©ãå®ãã¦ãããä½ç©ãé¢ç©ã§è¡¨ç¾ãããã¨ã§ãç´è¦³ãã¯ããããããããã«å¿ããããï¼æ¬¡å 空éã«ãããã¡ãã³ãã³ã¯ãé常ã«ç¾å³ãããã§ããã¶ãã¤ãã°ä»ã«ããµã¯ãµã¯ã¨ããé³ãè³ã«èããã¦ãããã ã
Â
Â
å³å³ã¯ãã¨ã³è»¸ããã¡ãã³ãã³ãåå¨ãã次å ã®æ¬¡å æ°ããã¿ã軸ããç®ãã¡ãã³ãã³å ¨ä½ã«å ããå²åãã表ããâãå·¦å´ã§è¡¨ç¾ãããã¡ãã³ãã³ãå©ç¨ãã¦ãããã©ã¡ã¼ã¿ã§ãããããã§æ¬¡å æ°ãï¼ï¼ç®ã®å²åã0.03ãªã®ã§ãï¼ï¼ ããµã¯ãµã¯ãã§ããã¨è¨ããã
Â
Â
Â
ã¡ãã³ãã³ã®ç®ã®åã¿ã¯ãåå¾ã«å¯¾ãã¦1ï¼ ã«è¨å®ãããä¸ã®å³ããã¯ããããä¸è¬çãªã¡ãã³ãã³ã®è¡¨ç¾ã«ãªã£ã¦ãããã¨ãæ¨å¯ãããã以ä¸ã§ã¯ãããã¨åããã©ã¡ã¼ã¿ãç¨ãã¦ãã¡ãã³ãã³ã®ç®ã®æåã調ã¹ã¦ããã
Â
Â
Â
Â
ç¶ãã¦ãï¼ï¼æ¬¡å 空éã«ãããã¡ãã³ãã³ãè¦ã¦ã¿ãã
Â
Â
Â
Â
Â
Â
Â
Â
Â
ããã¯â¦
Â
Â
Â
Â
é«ç´ãªãã³å±ã«ããã¨ãã¡ãã³ãã³ã®ç®é¨åãåãã¯ããã¼çå°ã§ä½ããã¦ãããå¥ã ã«ç¼ããã¦å¼µãä»ãããã¦ãããã¨ãããã
Â
ï¼ï¼æ¬¡å 空éã«ãããã¡ãã³ãã³ã¯ãããªãã¡ãã®ãããªé«ç´ã¡ãã³ãã³ã«è¿ããªã£ã¦ããã¨è¨ããããªãã¦ãå¾ãªãã ãåã«ã¡ãã³ãã³ãï¼ï¼æ¬¡å 空éã«é£ã°ãã ãã§ããµã¯ãµã¯æãå ¨ä½ã®ï¼ï¼ï¼ ã楽ãããã
Â
Â
Â
Â
Â
ç¶ãã¦ãï¼ï¼ï¼æ¬¡å 空éã«ãããã¡ãã³ãã³ãè¦ã¦ã¿ãã
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
ç®ã®å²åãï¼ï¼ï¼
ãè¶
ãããã¯ãã¡ãã³ãã³ã¨ããããã¯ããã¼ç¶æ
ã§ããã
ç¹°ãè¿ããããç®ã®åã¿ãã表ãæ°å¤ã¯ï¼æ¬¡å
ã®ã¨ãããå¤ãã¦ããªãã
Â
åå¾ã®ãããï¼ï¼ ã®ã¾ã¾ã§ããããããªã®ã«ãã¡ãã³ãã³å ¨ä½ã«å ããå²åã¨ãã¦ã¯ããã§ã«ï¼ï¼ï¼ ã«éãã¦ãã¾ã£ã¦ãããé«æ¬¡å 空éã«ããã¦ã¯ãããã«ã¡ãã³ãã³ãæã ã®å¹¾ä½å¦çãªç´è¦³ã«åããé£ç©ã«ãªããã伺ããããã ããã
Â
Â
Â
ããã¦æå¾ã«ãï¼ï¼ï¼æ¬¡å 空éã«ãããï¼ï¼ï¼æ¬¡å ã¡ãã³ãã³ãè¦ã¦ã¿ããã
Â
Â
Â
Â
Â
Â
Â
Â
Â
Â
å®å ¨ã«ç®ã«ãªã£ã¦ãã¾ã£ãâ¦ã
ããããããã次å ã®åªããããªãã¡ãµã¯ãµã¯ã¡ãã³ãã³åé¡ã§ããã
é«æ¬¡å
空éã«ããã¦ã¯ãé¢ç©ãç表é¢ã«éã¾ãããã¦ã
ã¡ãã³ãã³ããµã¯ãµã¯ã«ãªãããã¦ãã¾ãã®ã§ãããÂ
Â
Â
ãããã«
Â
次å ã®åªãããã¡ãã³ãã³ã«ãã£ã¦è¦³å¯ãããã¨ã§ãé«æ¬¡å 空éã«ãããé¢ç©ã®æåã«ã¤ãã¦ç´è¦³ãå¾ããã¨ãã§ããã
Â
次å ã®åªãã¯ãMCMCãªã©è¿å¹´ã®ãµã³ããªã³ã°æè¡ã®ç解ã«ããã¦é常ã«å¤§äºãªåºç¤çäºå®ã§ããã®ã§ããã®ãããªç´æçãªèª¬æãææ¡ããï¼ mima_teaæ°ã«å°æ¬ã®æã表ããçµã³ã®è¨èã¨ããã
Â
Â
ãã¤ãå¿ã«ã¡ãã³ãã³ã
Â
Â
ããã¾ã
Â
Â
Â
使ç¨ããã½ã¼ã¹ã³ã¼ã
Â
melonpan-like visualization of "curse of dimension ...
Â
Â
åèæç®
Â
ãã¿ã¼ã³èªèã¨æ©æ¢°å¦ç¿ ä¸
- ä½è : C.M.ãã·ã§ãã,å ç°æµ©,æ ç°å¤å夫,æ¨å£ç¥ä¹,æ¾æ¬è£æ²»,æç°æ
- åºç社/ã¡ã¼ã«ã¼: 丸ååºç
- çºå£²æ¥: 2012/04/05
- ã¡ãã£ã¢: åè¡æ¬ï¼ã½ããã«ãã¼ï¼
- è³¼å ¥: 6人 ã¯ãªãã¯: 33å
- ãã®ååãå«ãããã° (18件) ãè¦ã
Â
Â
Â
質åã³ã¼ãã¼
Â
ãã¤ããï¼ãã¡ãã³ãã³ã¯çã§ã¯ãªãåç¤ã§ã¯ãªãã®ã§ããï¼
ãããï¼ããåã¿ãããªåã®ããã¬ãã¯å«ãã ã
*1:ï¼æ¬¡é¢æ° x ã¨ï¼æ¬¡é¢æ° x ^2ã«ã¤ãã¦ã x < 1ã®é¨åã§ã¯ç´ç· x ã®ã»ãã大ããã®ã«ã x > 1ã«ãªãã¨æ¥æ¿ã«æ¾ç©ç·x^2ã®å¤ãç´ç·ãã大ãããªããããªå¤åããé«æ¬¡å ã§ã¯ããéç´æçãªã¬ãã«ã§èµ·ããã¨ãããã¨ã®ããã ã