ãKaggle Advent Calendar 2024ãã® 20 æ¥ç®ã®è¨äºã§ãã
ãã¥ã¼ãºã¬ã¿ã¼ãWeekly Kaggle Newsããæ¬æ¥ 5 å¨å¹´ãè¿ãã¾ãããæ¥æ¬èªã§ãKaggleãã¯ããã¨ãããã¼ã¿åæã³ã³ããã£ã·ã§ã³ã«é¢ãã話é¡ãåãæ±ã£ã¦ãã¾ããé±æ¬¡ã§æ¯é±éææ¥ã«æ´æ°ãã¦ãããææ°ã¯æ¬æ¥é
ä¿¡äºå®ã®ç¬¬ 262 å·ã§ããã¡ã¼ã«é
ä¿¡ã®æ§è³ªä¸ãã¾ãå®æã湧ãã¥ããã®ã§ãããè³¼èªè
æ°ã¯ç¶ç¶çã«å¢å ã 2850 人ç¨åº¦ã«ãªãã¾ããã

ããã§ã¯ãä»å¹´çºè¡ã® Weekly Kaggle News çµç±ã§é²è¦§ããã URL ã®ã©ã³ãã³ã°çµæãç´¹ä»ãã¾ããåç´ãªã¯ãªãã¯åæ°ãªã®ã§ãè³¼èªè
æ°ãå¢ãã¦ããç´è¿ã®åãæå©ãªæ¡ä»¶ã«ãªã£ã¦ãã¾ãããªãéå»åãã©ã³ãã³ã°ãå
¬éãã¦ãã¾ãã
è¦è½ã¨ãã¦ããè¨äºãããã°ããã²ã覧ãã ããã
1 ä½: 132 ã¯ãªãã¯ï¼#230ï¼
æãã¯ãªãã¯æ°ãå¤ãã£ãã®ã¯ãç³»åãã¼ã¿ãæ±ã£ã Kaggle ã³ã³ãã¨ä¸ä½è§£æ³ãæ¯ãè¿ããªãããç³»åãã¼ã¿ã®æ·±å±¤å¦ç¿ã¢ãããªã³ã¯ãã俯ç°ãã¦ããçºè¡¨è³æã§ããã
ä»å¹´éå¬ããããã¼ã¿ç¨®å¥ã® Kaggle ã³ã³ãã«ã¤ãã¦ã¯ã12 æ 1 æ¥ã«å
¬éããããKaggle Advent Calendar 2024ã2024 å¹´ã«éå¬ããã Kaggle ã³ã³ãæ¯ãè¿ããã§ç´¹ä»ãã¦ãã¾ãã
2 ä½: 128 ã¯ãªãã¯ï¼#241ï¼
ãã¼ãã«ãã¼ã¿ã®åå¦çãé¡æã«ãããªãã¸ã§ã¯ãæåã®ã³ã¼ãã£ã³ã°è¡ã«é¢ããè¨äºã 2 ä½ã«å
¥ãã¾ããã
ãã¼ã¿ã¨å¦çãã¯ã©ã¹ã«è¨è¿°ãããã¨ã§ãå¯èªæ§ã»åå©ç¨æ§ã»ä¿å®æ§ãåä¸ãããèãæ¹ãç´¹ä»ãã¦ãã¾ãã
zenn.dev
3 ä½: 127 ã¯ãªãã¯ï¼#220ï¼
3 ä½ãã³ã¼ãã£ã³ã°è¡ã«é¢ããè¨äºã§ããã
å¯èªæ§ã®é«ãã³ã¼ããæ¸ãããã«éçºè
ã®æå³ãã³ã¼ãä¸ã§è¡¨ç¾ããæ¹æ³ãç´¹ä»ãã¦ãããå½åè¦åã»åãã³ãã»ã¯ã©ã¹è¨è¨ãªã©ã®è©±é¡ãæ±ã£ã¦ãã¾ãã
qiita.com
4 ä½: 118 ã¯ãªãã¯ï¼#221ï¼
4 ä½ã¯ã常ã«æ³¨ç®ããã¦ããã決å®æ¨ vs 深層å¦ç¿ãã®è©±é¡ã§ãã
è«æãWhy do tree-based models still outperform deep learning on typical tabular data?ãã®è§£èª¬è¨äºã§ããã¼ãã«ãã¼ã¿åæã§ã®æ±ºå®æ¨ã¨æ·±å±¤å¦ç¿ã®æ§è½ãæ¯è¼ãã¦ãã¾ãã
voice.pkshatech.com
5 ä½: 109 ã¯ãªãã¯ï¼#222ï¼
5 ä½ã¯ããã¡ãã常ã«è©±é¡æ§ãé«ãç°å¢æ§ç¯ã«é¢ããè¨äºã§ããã
Docker ãç¨ããæ©æ¢°å¦ç¿ç°å¢ã®æ§ç¯æ¹æ³ã«ã¤ãã¦ãå©ç¹ã使ãæ¹ãªã©ã解説ãã¦ãã¾ãã
zenn.dev
6 ä½: 109 ã¯ãªãã¯ï¼#236ï¼
深層ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ã®é«éåã«é¢ããæ¸ç±ã
éååã»æåãã»è¸çã»ä½ã©ã³ã¯è¿ä¼¼ã»ã¢ãã«ãã¼ã¸ãªã©ã®ææ³ãèæ¯ã«ããçè«ã解説ãã¦ãã¾ãã
深層ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ã®é«éå (ML Systems)
7 ä½: 107 ã¯ãªãã¯ï¼#250ï¼
大è¦æ¨¡è¨èªã¢ãã«ï¼LLMï¼ã®å¦çã®å¹çåã«é¢ãã解説è³æã
åä¸ã¢ãã«ã§ã®è¨ç®å¹çã®æ¹åããæ¨è«å¦çã®ã¾ã¨ãä¸ãã¨ãã£ã話é¡ãç´¹ä»ããã¦ãã¾ãã
8 ä½: 105 ã¯ãªãã¯ï¼#224ï¼
表形å¼ãã¼ã¿ã»ãããé«éã«å¦çãããPolarsãã¨ããã¼ã¿æ¤è¨¼ã®ããã®ãPanderaããç´¹ä»ãã¦ããçºè¡¨è³æã
2 ã¤ã®ã©ã¤ãã©ãªã®æ¦è¦ã説æãã¦ãã¾ãã
9 ä½: 103 ã¯ãªãã¯ï¼#231ï¼
Python ã®å¦çé度ã«ç¦ç¹ãå½ã¦ãæ¸ç±ã
çµã¿è¾¼ã¿æ©è½ãCPythonãGPUã®å©ç¨ãªã©ããã¾ãã¾ãªææ³ãåãä¸ãããã¦ãã¾ãã
www.shoeisha.co.jp
10 ä½: 102 ã¯ãªãã¯ï¼#212ï¼
1 æ 9 æ¥ã¾ã§ã®æééå®ã§åé¡ã«ãªã£ã¦ãããThe Kaggle Bookï¼ãã¼ã¿åæ競æ å®è·µã¬ã¤ãï¼ç²¾é31人ã¤ã³ã¿ãã¥ã¼ãï¼ã¤ã³ãã¬ã¹ï¼ã®æ¸ç±ãã¼ã¸ã
1 æ 5 æ¥é
ä¿¡å·ã§ç´¹ä»ããã¾ããã
tatsu-zine.com
11 ä½: 102 ã¯ãªãã¯ï¼#240ï¼
ãã¼ãã«ãã¼ã¿ãå¦çãããPandasãã©ã¤ãã©ãªãããPolarsãã©ã¤ãã©ãªã¸ã®æ¸ãæãã«é¢ããçºè¡¨è³æã
é«éåã®å®ä¾ã¨ééãã課é¡ãç´¹ä»ãã¦ãã¾ãã
12 ä½: 101 ã¯ãªãã¯ï¼#214ï¼
ã¢ã³ãµã³ãã«ææ³ã®å¼·ã¿ã»å¼±ã¿ããåã
ã®ã¢ãã«ã®ç²¾åº¦ããã¢ãã«ã®å¤æ§æ§ããäºæ¸¬çµæãæ··åããéã«çºçããæ
å ±ã®æ失ãã®è¦³ç¹ã§è¦å åæããã©ã¤ãã©ãªã
å½éä¼è°ãICML2022ãã«æ¡æãããè«æã®å®è£
ã§ãã
github.com
13 ä½: 101 ã¯ãªãã¯ï¼#235ï¼
æ¨è¦ã¢ã«ã´ãªãºã ã«é¢ããå
¥éè¨äºãå®è·µç·¨ã¨ãã¦ãã³ã³ããé¡æã«ããã½ã¼ã¹ã³ã¼ããæ²è¼ãã¦ãã¾ãã
qiita.com
14 ä½: 98 ã¯ãªãã¯ï¼#236ï¼
å帰ã»åé¡åé¡ã®ç¹å¾´çãªæ失é¢æ°ã解説ãã¦ããçºè¡¨è³æã深層å¦ç¿ã©ã¤ãã©ãªãPyTorchãã§ã®å®è£
ãç´¹ä»ãã¦ãã¾ãã
15 ä½: 97 ã¯ãªãã¯ï¼#213ï¼
æç³»åäºæ¸¬ã©ã¤ãã©ãªãProphetããç¨ããåæã®æµããç´¹ä»ãã¦ããè¨äºãé¡æã¨ã㦠Kaggle ã«ã¢ãããã¼ãããã¦ããæ ªä¾¡ãã¼ã¿ãå©ç¨ãã¦ãã¾ãã
zenn.dev
16 ä½: 91 ã¯ãªãã¯ï¼#229ï¼
ãã°ã©ããã¥ã¼ã©ã«ãããã¯ã¼ã¯ãï¼è¬è«ç¤¾ï¼ã®èè
ã«ããæ¸ç±ã®ç´¹ä»è³æãã°ã©ãæ§é ã«ããå®å¼åããã°ã©ããã¥ã¼ã©ã«ãããã¯ã¼ã¯ã®å°å
¥ã»å¿ç¨ãªã©ã解説ãã¦ãã¾ãã
17 ä½: 92 ã¯ãªãã¯ï¼#217ï¼
2024 å¹´ 2 ææç¹ã§å©ç¨é »åº¦ã®é«ãã㪠Python ã®æ°æ©è½ã»ã©ã¤ãã©ãªã»ãã¼ã«ãªã©ãç´¹ä»ãã¦ããè¨äºã
ç°å¢æ§ç¯ãåãã³ãããã¼ã¿ã¯ã©ã¹ãªã©ãåãä¸ãã¦ãã¾ãã
tech.uzabase.com
18 ä½: 91 ã¯ãªãã¯ï¼#251ï¼
10 æ 1 æ¥çºè¡ã®é»åæ
å ±éä¿¡å¦ä¼èªã«æ²è¼ãããè¨äºã
èè
ã®æå±æ©é¢ã®ãµã¤ãã§ãPDF ãç¡æå
¬éããã¦ãã¾ãã
å®åã«ãã¼ã¿åæã³ã³ãã¯æå¹ã
19 ä½: 90 ã¯ãªãã¯ï¼#212ï¼
å»çåéã§ã® AI ç 究ã»å¿ç¨ã®ææ°ååãã¾ã¨ããè³æãKaggle ã§ãå»ç¨ç»åãé¡æã¨ããã³ã³ããæ°å¤ãéå¬ããã¦ãã¾ãã
20 ä½: 88 ã¯ãªãã¯ï¼#258ï¼
æ§ã
ãªå®é¨è¨å®ã§ã表形å¼ãã¼ã¿ã®ã©ã¤ãã©ãªãã¨ã®å¦çé度ãæ¯è¼ãã¦ããè¨äºãGPU ã®æç¡ã«ããæ¨å¥¨ã©ã¤ãã©ãªãç´¹ä»ãã¦ãã¾ãã
zenn.dev
21 ä½: 87 ã¯ãªãã¯ï¼#228ï¼
ç³ã¿è¾¼ã¿ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ï¼CNNï¼ã¨ Vision Transformerï¼ViTï¼ãéãã¦ãç»åèªèã®åºç¤ãå®è·µä¾ã¨ã¨ãã«è§£èª¬ããæ¸ç±ãPythonï¼PyTorchï¼ã®ãµã³ãã«ã³ã¼ããæä¾ãã¦ãã¾ãã
www.ohmsha.co.jp
22 ä½: 87 ã¯ãªãã¯ï¼#258ï¼
大è¦æ¨¡è¨èªã¢ãã«ã®ç»å ´ã¾ã§ã®èªç¶è¨èªå¦çã®æ½®æµã解説ãã¦ããè³æãç¾ç¶è¦æã¨ããã¦ããå¦çã課é¡ã«ã¤ãã¦ãç´¹ä»ãã¦ãã¾ãã
23 ä½: 87 ã¯ãªãã¯ï¼#252ï¼
Kaggle ã®ã³ã¼ãæåºå½¢å¼ã³ã³ããé¡æã«ãéçºå¹çã®åä¸ãè¦æ®ãã¦ããã©ã¦ã¶ããªãã¹ã使ããªãä½æ¥ããã¼ã«é¢ããè¨äºãã³ã¼ããå¦ç¿æ¸ã¿ã¢ãã«ã®ã¢ãããã¼ãããã©ã¤ãã©ãªã®ç®¡çãªã©ã®æ¹æ³ãç´¹ä»ãã¦ãã¾ãã
ho.lc
24 ä½: 86 ã¯ãªãã¯ï¼#224ï¼
Kaggle Master ã® Q_takka ããã«ãã Kaggle ã¨éçºå®åã®éãã«é¢ããçºè¡¨è³æãããã¸ã§ã¯ãé²è¡ã«ãããä¼ç»ãå¶ç´ãªã©ã®è¦³ç¹ãç´¹ä»ãã¦ãã¾ãã
25 ä½: 85 ã¯ãªãã¯ï¼#221ï¼
Kaggle Grandmaster ã® senkin13 ããã«ããçºè¡¨è³æãã³ã³ãé¸ã³ãã¢ããã¼ã·ã§ã³ãæ
å ±åéãæçµæåºé¸æã®æ¦ç¥ãç´¹ä»ãã¦ãã¾ãã