Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
「巨人の肩の上」で自作ライブラリを作る技術 / pyconjp2024
Search
Shotaro Ishihara
September 22, 2024
Technology
3
870
「巨人の肩の上」で自作ライブラリを作る技術 / pyconjp2024
「巨人の肩の上」で自作ライブラリを作る技術 (PyConJP 2024)
https://2024.pycon.jp/ja/talk/CLJQ37
Shotaro Ishihara
September 22, 2024
Tweet
Share
More Decks by Shotaro Ishihara
See All by Shotaro Ishihara
記者・編集者との協働:情報技術が変えるニュースメディア / Kaishi PU 2024
upura
0
4
ニュースメディアにおける生成 AI の活用と開発 / UTokyo Lecture Business Introduction
upura
0
130
マルチモーダル AI 実装の課題と解決策 / Developer X Summit
upura
0
200
ニュースメディアにおける事前学習済みモデルの可能性と課題 / IBIS2024
upura
3
670
Quantifying Memorization and Detecting Training Data of Pre-trained Language Models using Japanese Newspaper
upura
0
47
第 2 部 11 章「大規模言語モデルの研究開発から実運用に向けて」に向けて / MLOps Book Chapter 11
upura
0
420
第19回YANSシンポジウムスポンサー資料 / yans2024-nikkei
upura
0
47
Quantifying Memorization of Domain-Specific Pre-trained Language Models using Japanese Newspaper and Paywalls
upura
0
61
「極意本」サンプルコードをクラウド上で動かそう
upura
1
2.5k
Other Decks in Technology
See All in Technology
PR TIMESにおけるNext.jsとcacheの付き合い方
apple_yagi
3
350
Oracle Base Database Service:サービス概要のご紹介
oracle4engineer
PRO
0
15k
Kubeshark で Kubernetes の Traffic を眺めてみよう/Let's Look at k8s Traffic with Kubeshark
kota2and3kan
3
350
Kubernetesトラフィックルーティング徹底解説/Kubernetes-traffic-deep-dive
oracle4engineer
PRO
5
1k
How to be an AWS Community Builder | 君もAWS Community Builderになろう!〜2024 冬 CB募集直前対策編?!〜
coosuke
PRO
2
2.6k
OpenAIの蒸留機能(Model Distillation)を使用して運用中のLLMのコストを削減する取り組み
pharma_x_tech
3
400
Postman と API セキュリティ / Postman and API Security
yokawasa
0
150
サーバレスアプリ開発者向けアップデートをキャッチアップしてきた #AWSreInvent #regrowth_fuk
drumnistnakano
0
180
KnowledgeBaseDocuments APIでベクトルインデックス管理を自動化する
iidaxs
0
120
AWS re:Invent 2024登壇資料(GBL206-JA: Unleashing the power of generative AI on AWS for your business)
minorun365
PRO
7
280
アップデート紹介:AWS Data Transfer Terminal
stknohg
PRO
0
150
Password-less Journey - パスキーへの移行を見据えたユーザーの準備 @ AXIES 2024
ritou
2
1.3k
Featured
See All Featured
Documentation Writing (for coders)
carmenintech
65
4.5k
Music & Morning Musume
bryan
46
6.2k
GraphQLの誤解/rethinking-graphql
sonatard
67
10k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
28
2.1k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
132
33k
Bash Introduction
62gerente
608
210k
Optimising Largest Contentful Paint
csswizardry
33
3k
Navigating Team Friction
lara
183
15k
Building Adaptive Systems
keathley
38
2.3k
Bootstrapping a Software Product
garrettdimon
PRO
305
110k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
48
2.2k
Building Applications with DynamoDB
mza
91
6.1k
Transcript
「巨人の肩の上」 で自作ライブラリ を作る技術 石原祥太郎 (日本経済新聞社) PyCon JP 2024、2024 年 9
月 28 日
特定の目的に向けて既存 技術を調査し、自作の Python ライブラリを実 装・評価する一連の流れ を紹介 2 「巨人の肩の上」で自作ライブラリ https://speakerdeck.com /upura/pyconjp2024
①要件の確認 ②既存ライブラリ・文献の調査 ③方針の策定 ④実装・性能評価・改善 3 開発手順
①要件の確認 ②既存ライブラリ・文献の調査 ③方針の策定 ④実装・性能評価・改善 4 開発手順
大学新聞で編集長などを経て、 日本経済新聞社に入社。現在は 研究開発部門で、独自の大規模 言語モデルの構築に従事。 5 現在のお仕事
> 実践:日本語文章生成 Transformersライブラリで学 ぶ実装の守破離 https://2022.pycon.jp/timetable/?id=EEA8FG 6 PyCon JP 2022
7 国際会議 INLG 2024 (9/23-27) で発表 • 日経電子版で学習した大規模 言語モデル (GPT-2)
の暗記を 分析した研究 [論文] • 日本科学未来館で開催
8 大規模言語モデルの構築 事前学習用のテキスト データ (新聞記事) 事前学習・ 事後学習
9 大規模言語モデルの特徴 事前学習用のテキスト データ (新聞記事) 2日の東京市場で日経平均株価の 下落幅が2200円を超え、前日の 米国株に続きアジアや欧州にも 調整が広がった。 日経平均2216円安 下げ幅歴代
2位 米景気下振れ警戒 緩和頼 み脱却へ途上, 日経電子版, 2024 年8月2日. https://www.nikkei.com/article /DGKKZO82545690T00C24A8 MM8000/
10 大規模言語モデルの特徴 事前学習用のテキスト データ (新聞記事) 2日の東京市場で日経平均株価の 下落幅が2200円を超え、前日の 米国株に続きアジアや欧州にも 調整が広がった。 いつ?
11 何が問題? 日経平均株価の下げ幅が歴代2位 だったのはいつ? 2日です ?????????
12 実現したいこと 事前学習用のテキスト データ (新聞記事) 2024年8月2日の東京市場で日経 平均株価の下落幅が2200円を超 え、前日の米国株に続きアジア や欧州にも調整が広がった。 公開日を
用いて復元
新聞記事から時間表現を抽出し 日付を特定し省略を補完 • 入力:テキスト、公開日時 • 出力:補完されたテキスト 13 題材となる自作ライブラリ
大規模言語モデルの事前学習用 のテキストは大量のため、一定 の性能で高速処理できることが 望ましい 14 自作ライブラリの要件
①要件の確認 ②既存ライブラリ・文献の調査 ③方針の策定 ④実装・性能評価・改善 15 開発手順
16 要件を踏まえ既存の取り組みを調査 • 社内で共有するなど、有識者に質問 • 一つの文献を起点に、芋づる式に探索 • X などで、定期的に情報収集 •
「車輪の再開発」を避ける 既存ライブラリ・文献の調査
時間情報表現を抽出・規格化 ❯ print(TimexParser().parse("彼は2008 年4月から週に3回のジョギングを、朝8時 から1時間行ってきた")) 17 既存ライブラリ①:ja-timex
時間情報表現を抽出・規格化 ❯ [<TIMEX3 tid="t0" type="DATE" value="2008-04-XX" text="2008年4月">] 18 既存ライブラリ①:ja-timex
汎用言語モデルに基づく統合的解析器 ❯ kwja --text "日本サッカー協会は27日、 来年2、3月にホームで開催する男女の日 本代表と北朝鮮代表との試合会場が東京・ 国立競技場に決まったと発表した。" 19 既存ライブラリ②:KWJA
汎用言語モデルに基づく統合的解析器 ❯ + 21D <NE:DATE:27日><体言><修飾><時間> 27 にじゅうしち 27 名詞 6
数詞 7 * 0 * 0 日 にち 日 接尾辞 14 名詞性名詞助数辞 3 * 0 * 0 "代表表記:日/にち 準内容語 カテゴリ:時間" <基本句-主辞> 20 既存ライブラリ②:KWJA
ja-timex の README やドキュメントを起 点に、芋づる式に • 引用している/されている文献を調査 • Connected Papers
などでも関連研究を 調査 21 既存文献の調査
①要件の確認 ②既存ライブラリ・文献の調査 ③方針の策定 ④実装・性能評価・改善 22 開発手順
ja-timex の「実装方針」を参考に、時間 情報表現の抽出と、省略の補完の処理を 分けて考えるべきと判断 • 抽出:ja-timex にお任せ • 補完:独自実装のため性能評価が必要 23
方針の策定
24 KWJA (などの大規模言語モデル) は性能 面で優れているが、実行時間や費用がか かるため、今回は不採用に • ChatGPT など商用 API
も同様 • ja-timex はルールベースで軽量 不採択の理由
①要件の確認 ②既存ライブラリ・文献の調査 ③方針の策定 ④実装・性能評価・改善 25 開発手順
26 1. ライブラリとして実装開始 2. いくつかの記事を手動で変換 3. 規則性を見い出しテストケースを作成 4. テストが通るように実装を追加し、必 要に応じて全体をリファクタリング
「テストファースト」で実装・評価・改善
27 ライブラリとして実装開始 • ディレクトリのルートに setup.py • pip install -e .
で編集モードでインス トール https://packaging.python.org/en/latest/gui des/distributing-packages-using-setuptools /
• プロジェクト名を付けると気分が乗る • 最初は入出力だけを定義することに ❯ from jarote import by_rote ❯
… ❯ by_rote(text, reference_datetime) 28 jaROTE (Reproducing Omitted Time Expressions for Japanese)
29 1. 入力のテキストに対して ja-timex を実 行し、時間情報表現を抽出 2. それぞれに対し、入力の公開日時を参 照して、省略があれば書き換えを実施 3.
書き換えを反映したテキストを返す jaROTE の内部処理
30 • 「日本経済新聞記事オープンコーパス」 の 96 記事を対象に Spreadsheet に入 出力の組を列挙 •
泥臭く取り組みながら、要件を精緻化し ていく 最終的に実現したい処理を手動で実行
31 • たとえば、年に関する文字列を具体的 な数値に変換するケースでまとめ上げ • テスト用ライブラリ pytest で、出力 と期待する結果の一致を確認 規則性を見い出し、テストケースを作成
• 当然、最初は不一致でテストが失敗 • テストが通るように実装を進めていく • 必要に応じて全体をリファクタリング 32 テストが通るように実装を追加
33 • 実装と性能評価が同時並行で完了 • テストケースを見ると処理が分かりや すい • 一方、初期の開発コストは大きくなる 「テストファースト」の特徴
• 特定の目的に向けて既存技術を調査し 自作の Python ライブラリを実装・評価 する一連の流れを紹介 • 手順は①要件の確認②既存ライブラリ ・文献の調査③方針の策定④実装・性 能評価・改善ーーから成る
34 本発表のまとめ
35 • 開発論の具体的な議論 (「テスト ファースト」「テスト駆動開発」など) • jaROTE で時刻表現の省略を補完した テキストは、大規模言語モデルにとっ て価値がある?
本発表で話さなかったこと
• 「巨人」の知見 (ja-timex や KWJA、 過去の発表文献など) に改めてお礼申 し上げます • jaROTE
もその一部になれるよう、鋭 意開発を進めていきます 36 謝辞