Асимптота
Асимпто́та криво́ї (грец. ασυμπτωτος — що не збігається, не дотикається) — це пряма, до якої крива при віддаленні в нескінченність наближається як завгодно близько.
Якщо крива, задана рівнянням y = f(x), віддаляється в нескінченність при наближенні x до скінченної точки a, то пряма x = a називається вертикальною асимптотою цієї кривої.
Види асимптот:
Вертикальна
Горизонтальна
Похила
Такими асимптотами є пряма x = 0 для гіперболи y = 1/x кожна з прямих x = kπ (k = 0, ± 1, ± 2, …) для функції у = ctg(x).
Крім вертикальної асимптоти x = 0 гіпербола y = 1/x має ще й горизонтальну асимптоту у = 0, як і графік функції у = е−x sin(х), проте він, на відміну від гіперболи, перетинає свою горизонтальну асимптоту нескінченну кількість раз.
Криві, що описуються рівняннями х³ + у³ = Заху (декартів лист), та у = 1/х + х мають похилу асимптоту.
Коефіцієнти k і b в рівнянні прямої у = kx + b — похилої асимптоти кривої у = f(x) при віддаленні до плюс чи мінус нескінченності, знаходять як границі:
Горизонтальна асимптота є частковим випадком похилої при k = 0. Дослідження асимптот дозволяє чіткіше уявити поведінку графіка функції, оскільки властивості функції поблизу її асимптоти дуже близькі до властивостей асимптоти — лінійної функції, властивості якої добре вивчені. Систематичне використання цієї властивості породило напрямок у сучасній математиці — «асимптотичні методи дослідження».
Не всі криві мають асимптоти. Наприклад, парабола асимптот не має.
- Григорій Михайлович Фіхтенгольц. Курс диференціального та інтегрального числення. — 2024. — 2403 с.(укр.)
- Графіки функцій: Довідник / Н. О. Вірченко, І. І. Ляшко, К. І. Шведов. — К. : Наукова думка, 1977. — 320 с.
- Асимптота [Архівовано 20 листопада 2016 у Wayback Machine.] //Українська радянська енциклопедія : у 12 т. / гол. ред. М. П. Бажан ; редкол.: О. К. Антонов та ін. — 2-ге вид. — К. : Головна редакція УРЕ, 1974–1985.
- Асимптоти // Вища математика в прикладах і задачах / Клепко В.Ю., Голець В.Л.. — 2-ге видання. — К. : Центр учбової літератури, 2009. — С. 320. — 594 с.