æç³»ååæ
å æ¥ã®ãã¨ã§ãããQuerie.meã§ãããªè³ªçãããã¾ãããããã¯é常ã«ãå°¤ããªãæè¦ã§ãããå®éãã®åé¡æèµ·ã«è¿ãã·ãã¥ã¨ã¼ã·ã§ã³ãè¦ããããã¨ã¯äºæ¬ã®æã§ã¯æ°ãåããªããããããã¾ããã¨ãããã¨ã§ãä»åã®è¨äºã§ã¯å ã ã®åé¡æèã¨ãããããè¦ãâ¦
çµ±è¨çå ææ¨è«ã¨è¨ãã°ãã£ããçµ±è¨å¦åéã§ã¯ã馴æã¿ã®ã¢ããã¼ãã«ãªã£ãæããããã¾ãæ©æ¢°å¦ç¿åéã§ãæ±ããã¼ããè¤éåããã«ã¤ãã¦æ³¨ç®ãé«ã¾ãç¶ãã¦ãããããã¯ã¹ã¨ããå°è±¡ãããã¾ãã ãã®ããã°ã§ã2016å¹´ãããããå ææ¨è«ã«é¢ããè¨äºãâ¦
ååã®ããã°è¨äºã¯ãè«æç´¹ä»ã¨ããå°å³ãªãã¼ãã ã£ãã«ãã¦ã¯ã ãã¶è©±é¡ãå¼ãã *1ããã§ãå人çã«ã¯ã¡ãã£ã¨æå¤ãªæããã£ãã®ã§ããã確ãã«ãä»ãã¨ãããTransformerã«ãè¦æãªãã®ãããã¨ããææã¯ãNNä¸å¼·ã®ç¾ä»£ã«ãã£ã¦ã¯ã»ã³ã»ã¼ã·ã§ãã«ãªãâ¦
å æ¥ããã¡ãã®ãã¹ãããè¦ãããã¾ãããAIæè¡éçºé¨ã®é«æ©ã社å åå¼·ä¼ã®è³æãæç³»åäºæ¸¬ã«Transformerã使ãã®ã¯æå¹ãï¼ããå ¬éãã¾ãããè«æAre Transformers Effective for Time Series Forecastingã®ç´¹ä»ãä¸å¿ã«ãæç³»åäºæ¸¬ã«ã¤ãã¦è§£èª¬ãã¦ãâ¦
ãã9å¹´ãåã®ãã¨ã§ãããæ²æ¬æ¬ããã¼ã¹ã¨ããè¨éæç³»ååæã®ã·ãªã¼ãºè¨äºãæ¸ãã¦ãããã¨ãããã¾ãããã®ä¸ã§ãå¯ãã«ä»ã§ãèªåãèªã¿è¿ããã¨ãããã®ãVARï¼ãã¯ãã«èªå·±å帰ï¼ã¢ãã«é¢é£ã®è¨äºã§ãã ãªã®ã§ãããä»äºãªã趣å³ãªãã§VARã¢ãã«ãâ¦
æ°åã³ããã¦ã¤ã«ã¹ææç(COVID-19)ã®ãã³ãããã¯ã«åã¾ãæ°é ãå ¨ãè¦ãããããã®è¨äºãæ¸ãã¦ãã2022å¹´8æ9æ¥æç¹ã§ãæ¥æ¬ã¯ãªãã¯ãã³ç³»çµ±BA.5å¤ç°æ ªã主ä½ã¨ãã第ä¸æ³¢ã«è¦èããã¦ããææ§ã§ããæ±äº¬ã§ãæ¯æ¥ã®ããã«2ä¸ã3ä¸äººã¨ããæ°è¦é½æ§è æ°â¦
å°ãåã®è©±ã§ãããç¾å¨COVID-19ã®ææãæ¡å¤§ãã¦ããå°åã§å®æ½ããããè延é²æ¢çéç¹æªç½®ï¼ã¾ãé²ï¼ãã«å¹æããã£ããã©ããã«ã¤ãã¦ãè¨éçµæ¸å¦çãªè¦³ç¹ã«åºã¥ããæ¿çè©ä¾¡ã¬ãã¼ããå ¬éããã¦è©±é¡ã«ãªã£ã¦ãã¾ããã 追è¨æ¬æ¥ååä¸ã«å ã®ã¬ãã¼ãèªâ¦
ããã¯å¹´æ«æä¾ã®ãã¨ã ã§ããæ ã«çæ§ã«ã¨ã£ã¦å½¹ã«ç«ã£ãããã¾ã¤ããå¦è¡ã»æè¡çã«ä¾¡å¤ããå 容ãªã©ã¯ä½ã²ã¨ã¤ãããã¾ããã®ã§ãäºããäºæ¿ãã ããã
ãæ°åã³ããã¦ã¤ã«ã¹ææçã«ãããæ²»çã®é²å±ï¼ä»¤å2å¹´10æ29æ¥ã«éå¬ããã第13åæ°åã³ããã¦ã¤ã«ã¹ææç対çåç§ä¼äºåå±æåºè³æãåºã«å é£å®æ¿ã»å é£åºä½æï¼ãã¨ããè³æãä¸éã§ç©è°ãé¸ãã¦ããããã§ãããã ããããè¦ã¦ãã¦åãå人çã«æ°ã«ãªâ¦
å æ¥æ¸ãããã®è¨äºã§ãããããã¤ãã¼ã¿ã¨ã¯è¨ãä¹±æ°ã·ã¼ããä¸ã¤ã«æ±ºãã¦çºçãããã©ã³ãã ã¦ã©ã¼ã¯ã«å¯¾ãã¦å®é¨ããã¦ããã®ã§ãä¹±æ°ã·ã¼ããè¤æ°éãã«å¤ãã¦ã¿ããçµæã¯å¤ãã£ã¦ããï¼åç¾ããªãï¼ã®ã§ã¯ãªããï¼ãã¨ããææãä½äººãã®å人ç¥äººããâ¦
COVID-19ãä¸çä¸ã«æææ¡å¤§ããæ¥æ¬å«ãå¤ãã®å½ã§å¤åºãéä¼ã®å¶éï¼èªç²ï¼æªç½®ãåããã¦ä¹ ããæ¨ä»ã§ãããããã«ä¼´ã£ã¦å¤ãã®ã¨ããã§COVID-19ã«é¢é£ãããªã¼ãã³ãã¼ã¿ãå ¬éãããããã«ãªã£ã¦ããããã¼ã¿åæãçæ¥ã¨ãã人éãå®ãã¼ã¿ãæ±ãè¯ãâ¦
追è¨åç¾æ§ããã§ãã¯ããå®é¨ãå¾æ¥å®æ½ãã¦ãã¾ããä½µãã¦ãèªã¿ãã ããã 以åãããªè¨äºãæ¸ãã¾ããã ãã®è¾ºã®è©±ã¯ã¨ã£ãã®æã«å¸¸èã«ãªã£ã¦ããã¨æã£ã¦ããã®ã§ãããæ¨ä»æ§ã ãªãã¢ãã«ããæå±ããã¦å ¬ã®å ´ã§å§ä¼ããããã¨ãå¢ãã¦ãã¦ããããâ¦
ãã®è¨äºã¯ã以ä¸ã®@icoxfog417ããã«ããåé¡æèµ·ã«åãããã¡ãã£ã¨ããå®é¨ãã¾ã¨ãããã®ã§ããæç³»åäºæ¸¬ã®åé¡ã«ããã¦ãæ©æ¢°å¦ç¿ã®ã¢ãã«ããæ¢åã®çµ±è¨ã¢ãã«(ARMAã¢ãã«ãªã©)ã®æ¹ãäºæ¸¬ç²¾åº¦ã«ããã¦åªè¯ãªçµæãåºãã¨ããç 究ããã¼ã¿ã¸ã®é©å=äºâ¦
å®ã¯ãã®ãã¿ã¯å ã å¥ã®ã¨ããã§ããåãã®ãã£ã話é¡ã ã£ãããã¾ããè²ã ãªé½åããã£ã¦ããæè¿{CausalImpact}ã«è§¦ããæ©ä¼ãèªåã«éããå¨å²ã§ãå¢ãã¦ããã®ã§ãããè¥ã人ãã¡ããããããã{CausalImpact}ã£ã¦ä½ããã¦ãããã§ããï¼ä½¿ãéã¯ä½ã«æ°â¦
ãã2ã¶æãããã«æ¸¡ã£ã¦å¤ãã®æ¹ã ãããèæ¸ããæµè´ãã¾ãã£ã¦ããã®ã§ããããã®ãã¡ã®ä¸åããã¡ãããã¤ã¦è¨éæç³»ååæãå¦ãã§ããé ã«åã大å¤ãä¸è©±ã«ãªã£ããLogics of Blueããã°ã®é¦¬å ´ããã®æã«ãããRã¨Stanã§ã¯ããããã¤ãºçµ±è¨ã¢ããªã³ã°â¦
TensorFlow Probability (TFP)ããªãªã¼ã¹ããã¦ãããã°ããçµã¡ã¾ãããæè¿ã«ãªã£ã¦ãããªã¢ã¸ã¥ã¼ã«ãå ¬éãããã¨ç¥ãã¾ããã Framework for Bayesian structural time series modelsã¨é¡ããã¦ããéãã§ããºããªTFPã§ãã¤ãºæ§é æç³»åã¢ãã«ãæ¨å®ãâ¦
(Google Trends)æè¿æç³»ååæãã¾ããã£ã¦ãªãã®ã§ã{bsts}ã®ä½¿ãæ¹ãæãåºããã¦ãã¤ãã§ã«ä¸å¤ªè¨äºãæ¸ãã¦ã¿ã¾ãããé¡ã¯ããã¼ã¿ãµã¤ã¨ã³ãã£ã¹ããã人工ç¥è½ããAIï¼ãããã¯ã¹ï¼ãã®Googleãã¬ã³ãããè¦ãä»å¾ã®ãã¼ã ååã§ããä»åã¯äºãã«ç¸äºâ¦
ããã¯åãªãåå¿é²ã§ãã詳細ãç¥ãããã¨ããæ¹ã¯ããã®è¨äºã®å ãã¿ã«ãªã£ã以ä¸ã®id:sinhrksããã®è¨äºããèªã¿ãã ããã ããã§ã®åé¡æèã¯é常ã«ã·ã³ãã«ã§ãããããæç³»åã¯ã©ã¹ã¿ãªã³ã°ãããªãè¨å¤§ãªè¡æ°ã®ãã¼ã¿ã«å¯¾ãã¦å®è¡ããéã«ã©ãã»ã©å³â¦
é¥ãå¤ã®æ代ãã¾ã èªåãç 究è ã ã£ãé ã«ãã¼ã¿åæã«ä½¿ã£ã¦ããææ³ã®ã²ã¨ã¤ã«åGrangerå æ (partial Granger causality) ã¨ãããã®ãããã¾ãããããã¯Guo et al. (2008)ã§æå±ããããã®ã§ãå½æã¯èè ã°ã«ã¼ãæä¾ã®ãªãªã¸ãã«Matlabãã¼ã«ããã¯ã¹â¦
ããã¯åãªãåå¿é²ã§ãããè«æã¨ãµã³ãã«ã³ã¼ãèªã¿ãªãã試ãã¾ããã以å¤ã«ä½ãå 容ã®ãªãè¨äºã§ãã®ã§ã注æãã ãããç¹ã«åã ã®å¼ã®å¤æ°ã®èª¬æã«ã¤ãã¦ã¯å人çãªåå¿é²ãã大åã端æãã¾ãã®ã§ãä»®ã«èå³ãæãããæ¹ã¯é©å®è«æã®æ¬æããåç §ä¸ãâ¦
2é±éåã«ãµã¨æãç«ã£ã¦ãããªãã¨ã試ãã¦ã¿ãããã§ããã ããããèãã¦ã¿ããããã¼ã¿ãçæããçã®ã¢ãã«ãæå¤ä¿æ°ï¼ã¢ãã«æ¨å®ãæå¤ä¿æ°ãã§ãã£ã¦ã¿ãçµæã並ã¹ãã ãã§ããããï¼ä¾ãã°ï¼æä¸å¤ä¿æ°ã¢ãã«ã§æ¨å®ãã¦ãã¾ã£ãå ´åãåãªãOLSç·â¦
ããã¯ãã ã®åå¿é²ã§ããç®æ°ããå 容ã¯ç¹ã«ä½ãããã¾ããããã¡ãã¨ããå 容ãå¦ã³ããã¨ããæ¹ã¯ãå æ¥èè ã®è©åãããããæµè´ããã ãããã¡ãã®æ¸ç±ã§å¦ã°ãããã¨ããè¦ããããã¾ããMCMCã«çã¾ãããç²åãã£ã«ã¿ã®å®è£ ï¼å®è·µã¾ã§ã«ãã¼ãã¦ãã¦â¦
3å¹´åã«å æãã§ã¹ã¨ããã¤ãã³ãã§Grangerå æã«ã¤ãã¦å°é家ã§ããªãã®ã«è¬æ¼ãããããã¨ããç¨æãªçµé¨ãããããã§ããã ãã®æã®ã¤ãã³ãå ±åè¨äºã§ãä¼å ´ã§ã®ãã£ã¹ã«ãã·ã§ã³ã®å 容ãè¸ã¾ãã¦åã¯ãããªãã¨ãæ¸ããã®ã§ããã éç·å½¢Grangerå ææ§â¦
ããè¨ãã°ãã¡ãã£ã¨åã®ãã¼ã¿åææ¥ç5å¹´éæ¯ãè¿ãè¨äºã§ã人工ç¥è½ãã¼ã ã«å¼ã£å¼µããã¦ãã¼ã¿ãµã¤ã¨ã³ãã£ã¹ããã¼ã ãåçãã¤ã¤ãããã¿ãããªãã¨ãæ¸ããããã§ãããæ¬å½ã«ãããªãã ã£ãï¼ã¨ããã¨ãããããã¾ã§ã«æ¤è¨¼ãããã¨ã¯ãªãã£ããªãã¨â¦
ããããã¡ã¿åæç³»ã®è¨äºãæ¸ãæã¨ããã®ã¯å¤§æµãã¿åãã®æãªãã§ããï¼æ±ï¼ãæè¿ã«ãªã£ã¦ãã®è¾ºã®ãã¤ã³ãã§ã¤ã¾ããã¦å°ã£ã¦ãããã¸ãã¹ãã¼ã¿åæã®ç¾å ´ã®è©±ãèããã¨ãã¾ãå¢ãã¦ããã®ã§èªååãã®åå¿é²ãå ¼ãã¦è¨äºã¨ãã¦ã¾ã¨ãã¦ããã¾ãã ãâ¦
ããã¯å®ã¯æ¢ã«å ãã¿ã®ãããã¼ãã§ãã Cross-validation for time series | Rob J Hyndman å人çã«ã¯ãã¬ã³ãã»å£ç¯èª¿æ´ä»ãæç³»åãã¼ã¿ã®å帰ã¢ãã«ãããå ´åã¯ã»ã¼ä¾å¤ãªããã¤ã¸ã¢ã³ã¢ããªã³ã°ã§åããã§ãããä¸è¬ã«ãã¤ãºç³»ã®ã¢ãã«ã¯ä¾ãã°WAICâ¦
Rããã±ã¼ã¸ç´¹ä»ã°ãããç¶ãã¦ãã¦æ縮ã§ãããããæè¿ã«ãªã£ã¦ãããªãã®ãFacebookãããªãªã¼ã¹ããã¦ããã®ãç¥ãã¾ãããããã¯ããã§ä½¿ãããããã ãªã¨æã£ããã§ãããå®ã¯Googleãããåæ§ã®MCMCãµã³ããªã³ã°ãã¼ã¹ã®æç³»ååæåãCRANããã±ã¼ã¸â¦
ãã®è¨äºã¯4å¹´åã®ä»¥ä¸ã®éå»è¨äºã®ç¶ãã§ãã大å¤é ã¾ããªãã*1ãæè¿ã«ãªã£ã¦åå¤éæç³»åã¢ããªã³ã°ã®ææ³ã¨ãã¦ARIMA / DLM以å¤ã«ãå¹¾ã¤ãæ¹æ³ãããã®ã ã¨ãããã¨ãç¥ãã¾ãããä¸ã¤ã¯ææ°å¹³æ»æ³ã¨ãããExponential Smoothing State Space Model (ETâ¦
æ¬æ¥8æ6æ¥ã«é§å ´ã§éãããæ¥æ¬çæ å¦ä¼é¢æ±å°åºä¼å ¬éã·ã³ãã¸ã¦ã ãéã¬ã¦ã¹æ§ï¼éç·å½¢æ§ï¼é対称æ§ããã®å ææ¨è«ææ³ï¼ãã®ä½¿ãã©ããã»åçã»å®è£ ãå¦ã¶ãé称å æãã§ã¹ã«ã¦ãGrangerå æã«ã¤ãã¦è©±ãã¦ãã¾ããã ã¡ãªã¿ã«äºåã«æ岳彦(id:takehiko-â¦
ä½ãæ1åããæ¸ããªããªãã¤ã¤ãããã®ã·ãªã¼ãºã§ãããä¸ã«ã¯@berobero11ããã®ããã«ããã³ãåãã®ã楽ãã¿ã«ãã¦ä¸ãã£ã¦ããæ¹ããããããããªã®ã§ãä¹ ãã¶ãã«æ´æ°ãã¦ã¿ã¾ãã ãã¡ããåèæç®ã¯ä»¥ä¸ã®2å + PDF bookããé¡ã¯Commandeuræ¬ã®ç¬¬5ç« â¦