2014-01-01ãã1å¹´éã®è¨äºä¸è¦§
ãã¼ã¿ãµã¤ã¨ã³ãã£ã¹ããçãæ®ãããã«å¿ è¦ãªã®ã¯ãæ¬è³ªãè¦æãåãï½å°å·åæ°ï½å°¾å´éæ°å¯¾è« ã¬ãããã¯ã¿ã¤ã ããã®ãæãã§ãããã¦æ£ç¢ºã«ã¯ãã¡ãã®è¨äºã§ç°å®®ç´äººãã(id:naototamiya)ããèªããã¾ãã¦ï¼ç¬ï¼ããããªå¯¾è«ãå æ¥å°å·åãã(id:ryuka0â¦
éã®éçã¾ã§åå¦çããç¶ãã¦ããéã«ããå¹´ã®ç¬ãæ¥ã¡ããã¾ãããããã¨ãããã¨ã§ãæ¨å¹´æ«åæ§ã«ä»å¹´ããã£ããæ¯ãè¿ã£ã¦ã¿ãããã¨æãã¾ãã æè»ãªçµ±è¨ã¢ããªã³ã°ãç®æãã¦Stanå°å ¥ãã¾ãã BUGS/Stan - é座ã§åãData Scientistã®ããã° ããã¯1â¦
R Advent Calendar 2014 (ATND)ã®ã¯ãªã¹ãã¹ã»ã¤ã´æ å½ã¨ãããã¨ã§ãã¯ãªã¹ãã¹ããªã¼ãæãã¦ã¿ã¾ãã R Advent Calendar 2014 : ATND ã¾ãã¯å»å¹´ããã£ãSVMã§ãã¤ãã§ã«ã¡ãã£ã¨ã ããã¯ã¤ãã»ã¯ãªã¹ãã¹æãåºãã¦ã¿ãæãã§ãã¯ãªã¹ãã¹ããªã¼ã®ãã¼ã¿â¦
æã æé©åè¨ç»ããã£ã¦ããã¿ãããªä¾é ¼ãããããã¨ããããã§ãããæ®éã®ç·å½¢è¨ç»æ³ã£ã¦æ®éã«ããã¨å®ã¯winner-take-allã¿ãããªãã¨ã«ãªã£ã¦ãçµå±ãããä»å¨ããªãããã¡ã¿ãããªãã¨ã«ãªããã§ãããããªã¼ãã¦æç´ããªããã°ã°ã£ã¦ãããããªPDFãâ¦
ã¡ãã£ã¨ä»é±ã¯å¿ãéãã¦æ°ãããã¨ã«åãçµãã§ããæéã1ç§ããã¨ãè¦ã¤ãããªãã®ã§ãå°ãåã«ãã£ãä¾ã®å¼ç¤¾åæãã¼ã è«æ輪èªä¼ã®ãã¿ããã®ã¾ã¾è»¢è¼ãã¦ããã¾ãorz å ãã¿ã¯ãã¡ãã Understanding Dropout ã¡ãªã¿ã«å¼ã丸åãããã®ã¯é¢åã ã£ãâ¦
ä½ããã®ã·ãªã¼ãºãã¡ããã¡ãä¹ ãã¶ããªãã§ããï¼æ±ï¼ãã¡ãã£ã¨æè¿åé¡æèãæ±ãã¦ãã話é¡ãããã®ã§ããã«é¢é£ããå½¢ã§Stanã§ãã£ã¦ã¿ããã¨æãã¾ãã ããã¯æç³»åã®ããã¬ã³ããã®æ±ãããã¸ãã¹ã®ç¾å ´ã§ã¯ãæç³»åãæèããªãã¦ãè¯ã*1ã¯ãã¹ã»â¦
ãã®ã·ãªã¼ãºè¨äºãæ師ãªãå¦ç¿ããããããã£ãã®ã§*1ããããããªã¨æã£ã¦ããã§ãããã²ãããªãã¨ããåãä¸ãå¿ãã¦ããã®ããã£ããªãã¨æãåºããã®ã§ãµã¯ãã¨ãã£ã¦ã¿ããã¨æãã¾ãã å¿ãã¦ããã®ã¯AdaBoostãæ®æ®µã¯ã»ã¨ãã©ä½¿ããªããã¼ã¹ãã£ã³â¦
è²ã ã¨èå³ãçºæ£ãã¦ãã¦éã話é¡ã°ãããã¦ã¾ããããããã¾ã å ¨ç¶çµãã£ã¦ãªãã®ã§ç²ã ã¨é²ãããã¨æãã¾ããã¨ãããã¨ã§ä»åã¯å£ç¯èª¿æ´ã®ã話ãCommandeuræ¬ã®é²è¡ã«åããã¦ãå£ç¯èª¿æ´ãããã ããã¬ã³ããªãã¨ããã¢ãã«ã§ããã¾ãããã¡ããããã¹â¦
ãã¦ãæè§Deep Learningãªãã¦ä½¿ããã ã£ããããã¡ãã£ã¨é¢ç½ããã¼ã¿ã§ãã£ã¦ã¿ãããï¼ã¨ãããã¨ã§ãå¤æ¬¡å ãã¼ã¿ã®ä»£è¡¨ããMNISTææ¸ãæåãã¼ã¿*1ã使ã£ã¦è©¦ãã¦ã¿ãããã¨æãã¾ãã ã§ãMNISTãã¼ã¿ãªãã§ããçé¢ç®ã«åã£ã¦ãããã¨ããã¨ãããâ¦
ãã£ãããã®ã·ãªã¼ãºã§Japan.Rã§åããã¨ã«æ±ºãã¦ãã¾ã£ãããã§é¢ä¿åæ¹é¢ããã®ãã¬ãã·ã£ã¼ãæãã¤ã¤ããä»æ¥ãã®é ã§ããã Japan.R 2014 : ATND ã¨ãããä¸åº¦ä¹ã£ã¦ãã¾ã£ãèãªã®ã§ããã®ã¾ã¾ã ãã ã{h2o}ã§Deep Learningã¨ãããé¡ã§ã¡ãã£ã¨ã·ãªâ¦
å æ¥ãã¨ããã³ã³ãµã«ã®ç¤¾é·ããã¨ãé ã飲ã¿ãªããã話ãã¦ãã¦åºã¦ãã話é¡ããç¢ç«ãã¼ã¿åæã£ã¦ä½ã®å½¹ã«ç«ã¤ãã ããï¼ãã¨ãããã®ã ã£ããã§ãããããã§åãæãåºãã¦ç´¹ä»ããã®ããçºç¥ãã§ä¸çé²åºãæåããã¦ããæé é ã®ã¨ãã½ã¼ãã ã£ãã®ã§â¦
æããèªç§°ãããµã*1ã¬ãå¢ä»£è¡¨@motivic_æ°ããããªè¨äºãupãã¦ã¾ããã Deep Learningã®æ§è½ãè¦ã¦ã¿ãã ï½Irisç·¨ï½ ã¨ãããã¨ã§ããããªã«ç°¡åã«Deep LearningãRä¸ã§è©¦ãããã ã£ããã¤ãã§ã«åããã£ã¦ã¿ããã¨æã£ãã®ã§ããããã ãåãirisã§ããâ¦
追è¨ï¼2018å¹´4æï¼ 2017å¹´4æã«ã¢ãããã¼ãè¨äºãåºãã¦ããã¾ãã®ã§ããã¡ããã覧ãã ããã 以åã®è¨äºã§SVMï¼ãããsvm{e1071}ã«éã£ã¦ï¼ã§ä¸åè¡¡ãã¼ã¿ãã¯ã©ã¹åé¡ããæ¹æ³ã«ã¤ãã¦åãä¸ãã¾ããããè²ã 調ã¹ãçµæãã®ä»ã®Rã®åé¡å¨ã§ããããã¨ãâ¦
ç¸å¤ãããã°ãã°ããªä¸ã«æå¥ã®æã¦ã«æ¢ã«Rã§ãã£ã¡ãã£ãä¾ãã¾ã¨ããPDF bookã¾ã§ããã¨å¤æãã¦ã¢ããã¼ã·ã§ã³ã ã ä¸ãããªãã§ãããåå¿é²ãå ¼ãã¦ãããã«ç¶ãã¾ãããã¡ããããã¹ãã¯ç¸å¤ããããã¡ãã®2åã ç¶æ 空éæç³»ååæå ¥éä½è : J.J.F.ã³â¦
ä»å¹´ã®KDD cupãçµµã«æãããããªä¸åè¡¡ãã¼ã¿ï¼æ£ä¾ã¨è² ä¾ã¨ã®æ°çæ¯çã極端ã«åã£ã¦ãããã¼ã¿ï¼ã§è¦å´ãããããã®ã§ãã¡ãã£ã¨èª¿ã¹ããè²ã ã¨è¯ãæ¹æ³ããããªãã¨æ°ãä»ãã¾ãããã¨ãããã¨ã§åå¿é²çã«ç´¹ä»ãã¦ããã¾ãã ã¡ãªã¿ã«ã°ã°ã£ããæ®éã«@â¦
ã¨è¨ã£ã¦ã大ãã話ã§ã¯ãªãã§ãã以ä¸ããã®ã¹ã©ã¤ãã Jc 20141003 tjo from Takashi J Ozaki ã¨ããããèªãã§ã¿ãå°è±¡ããè¨ãã¨ãããããããããªãã§KDDéãã®ããï¼ãã¨ãããã§ã確ãã«è¨ããã¦ã¿ãã°ãããããuser return timeã¿ãããªæ¦å¿µã£ã¦æ®â¦
ååãµã¯ãã¨ãã¼ã«ã«ã¬ãã«ã»ã¢ãã«ãæ¨å®ãã¦ã¿ãããã§ãããããè¨ãã°ãã©ã¡ã¼ã¿æ¨å®ã¯ä½ãããªãã£ãã®ã§ãããæ¢ã«ç·å½¢ã¢ãã«ãä¸è¬åç·å½¢ã¢ãã«ããã®ããã°ã§è¦ã¦ãã¦ãã以ä¸æå°äºä¹æ³ãæå°¤æ³ãMCMCã§ãã©ã¡ã¼ã¿æ¨å®ããã¨ããã®ã¯å¸¸èãªããã§â¦
ååããã ãã¶éã空ããä¸ã«ãè¦ã¯{dlm}ããã±ã¼ã¸ã§éã¼ãï¼ã¨ãã大è¢è£ãªã¿ã¤ãã«ã®å²ã«ä¸èº«ã®ãªããã®ã·ãªã¼ãºè¨äºã§ããï¼ç¬ï¼ãåããã®ãã¨ããããã¡ãã£ã¨ä¾é¡ããã£ã¦ã¿ããã¨æãã¾ããåèæç®ã¯ã¾ããã¡ãã®Petrisæ¬ã Rã«ãããã¤ã¸ã¢ã³åçâ¦
ä½æ°ãªãR-Bloggerã®ã¿ã¤ã ã©ã¤ã³ãè¦ã¦ãããã"CausalImpact: A new open-source package for estimating causal effects in time series | Google Open Source Blog"ã¨ããè¨äºãã·ã§ã¢ããã¦ããã®ã§è¦ã«è¡ã£ã¦ã¿ãã®ã§ãããããã¯ããèªãã§åã®å¦ããâ¦
KDD 2014, 8/24-27, New York: Data Mining for Social Good ã¨ãããã¨ã§å ±åãé ããªãã¾ããããè¡ã£ã¦åãã¾ããKDD2014 in NYCããã¤ã¦ã¢ã¡ãªã«æ¨ªæã¦ã«ãã©ã¯ã¤ãºã§ç¦çããã®ããã¥ã¼ã¨ã¼ã¯ã¸ãè¡ããããã¼ã¼ã¼ï¼ï¼ï¼ããæ¯å¹´TVã§è¦ã¦ããä¸ä»£*1ã¨ãâ¦
æ¦ç¥çãã¼ã¿ãã¤ãã³ã° (ã·ãªã¼ãº Useful R 4)ä½è : éæ´å¹³,éæå²åºç社/ã¡ã¼ã«ã¼: å ±ç«åºççºå£²æ¥: 2014/08/23ã¡ãã£ã¢: åè¡æ¬ãã®ååãå«ãããã°ãè¦ãéèãã¼ã¿è§£æã®åºç¤ (ã·ãªã¼ãº Useful R 8)ä½è : é«æ³æ ä¸,äºå£äº®,æ°´æ¨æ ,éæå²åºç社/ã¡ã¼ã«â¦
ãã¥ã¼ã¨ã¼ã¯ãã帰æãã¦ãããªãä½ã§ãããå¼ã°ã«ã¼ãã®ãªã¯ã«ã¼ããã£ãªã¢ãæä¾ãããµã¼ãã¹ããã£ãªãã«ãã¨ãã¼ã¿ã¹ã¿ã¸ã¢ã æ ªå¼ä¼ç¤¾æ§å ±å¬ã®ãã¼ã¿åæã³ã³ãããå¦çãã¼ã¿ãµã¤ã¨ã³ãã£ã¹ãæ¥æ¬ä¸æ±ºå®æ¦ Data Leagueãã8æ20æ¥ããéå¬ããã¦ããã¾â¦
KDD 2014, 8/24-27, New York: Data Mining for Social Good ã¨ãããã¨ã§ãç¾å¨2æ¥ç®ã®Paper Spotlightsã®æä¸ã§ãããã¹ã¿ã¼ã1æ¥ç®ã®å¤ãããªãã®ãæ®å¿µã§ããããã®åtalk sessionã§ãã£ããèãã¨ããã¨ããã§ããããã¡ãªã¿ã«åã¯KDDååå ãªã®ã§ç¥ãâ¦
追è¨(2015/03/14) 第7ç« ã®æ±ºå®æ¨ã®ã¨ããã§åãä¸ãã{mvpart}ããã±ã¼ã¸ã®ãµãã¼ããåããCRANããåé¤ããã¦ãã¾ã£ãããinstall.packagesé¢æ°ã§ã¯ã¤ã³ã¹ãã¼ã«ã§ããªããªã£ã¦ãã¾ããç¾å¨ã®ã¤ã³ã¹ãã¼ã«æ¹æ³ãæå¾ã«è¿½è¨ãã¾ããã 追è¨(2014/09/18) å®â¦
ãçä¼ã¿ã¨ãããã¨ã§åãä»é±ã¯ãã£ã¨ãä¼ã¿ãªã®ã§ããããããªè¨äºãWSJããåºã¦ããã¨ç¥ãã¾ããã ããã°ãã¼ã¿æ´»ç¨ã«åãéè¦å¢ãããã¼ã¿ãµã¤ã¨ã³ãã£ã¹ãã - WSJ 以åHBRã®Davenportè«èª¬ã«ã¤ãã¦ã³ã¡ã³ããããã¨æãã¾ããããããã2å¹´çµã£ã¦ã©ãâ¦
æ¬æ¥ãåºçå ã®æè¡è©è«ç¤¾(gihyo)æ§ã®å ¬å¼ãµã¤ãã§ãªã¼ãã³ã«ãªãã¾ããã æãåãããªããå¦ã¶ ãã¸ãã¹ã«æ´»ãããã¼ã¿ãã¤ãã³ã°ï¼æ¸ç±æ¡å ï½æè¡è©è«ç¤¾ ããã¦æ¸å½±ã¯ã¾ã åæ ããã¦ããªãããã§ãããAmazonã§ãäºç´åä»ãå§ã¾ã£ã模æ§ã§ã*1ã æãåãâ¦
ã ãã¶ååããéã空ãã¦ãã¾ãã¾ããããã¤ãã«10åç®ã«ãªã£ããã®ã·ãªã¼ãºè¨äºãããå¤åã¯ã©ã¹ã¿ãªã³ã°ã ã¨ãããæå¾ã«ãªãããããªãã§ããããã以å話é¡ã«åºã¦ããAffinity Propagationããã£ã¦ã¿ããã¨æãã¾ãã ãªã®ã§ãããä»åãæç®è³æã¯è¦ã¤â¦
ã¡ãã£ã¨Stanä¸è¾ºåã§ãã£ã¦ãã®ãéåå¹çãæªããªãã¨æãå§ãã¦ããã¨ããã«ã大ä»ã®ãªããµã³ããããªãã¤ã¹ãªè¨äºãupãã¦ããã®ã«ä»é æ°ä»ããã®ã§ããï¼ãªããµã³æ°ä»ãã®é ãã¦ãããï¼ã é次ã¢ã³ãã«ã«ã/(ç²å|ãã¼ãã£ã¯ã«|ã¢ã³ãã«ã«ã)ãã£ã«ã¿â¦
7/11ï¼éï¼-13ï¼æ¥ï¼ã«ããã¦ãæ²ç¸ã§éå¬ãããããã«ã¼ãºãã£ã³ãã«ã¼2014ã«ã²ã¹ãã¹ãã¼ã«ã¼ã¨ãã¦åå ãã¦ãã¾ãããå¼ç¤¾ã®å ¬å¼ã¨ã³ã¸ãã¢ããã°ã«ãåæ§ã®å 容ã§è¨äºãæ¸ããã¨ã«ãªã£ã¦ããã®ã§ããã¡ãã§ã¯å人çãªã話ãã Hackers Champloo ããã¯æ²â¦
ããã¾ã§è²ã ãªãã¼ã¿åææ¡ä»¶ãèªãæã¡ï¼æãããï¼ãã¾ãè²ã ãªä»æã®ç¾å ´ã®ãã¼ã¿åæã®å®æ ãèãã¦ããããã§ãããæå¤ã¨æªã ã«çµ±ä¸ãããå ±éèªèãå½¢æããã¦ãªãã®ããªãã¨æãã®ããæ½çã¬ã¤ã¤ã¼ï¼è¦æ¨¡ã¨ãã¼ã¿åæã®æ¹åæ§ã¨ã®ãã¹ããããããâ¦