渋谷駅前で働くデータサイエンティストのブログ

元祖「六本木で働くデータサイエンティスト」です / 道玄坂→銀座→東京→六本木→渋谷駅前

初めてこのブログに来た方へ


これは初めてこのブログに来た方々向けのトップ固定記事です。最新記事の更新状況に応じて随時更新されます。

はじめに


公式のプロフィールはLinkedInに掲載しております。


このブログの内容は個人の意見・見解の表明であり、所属組織の意見・見解を代表しません。またブログ記事の内容の正確性については一切保証いたしません。学術的・技術的コンテンツを求めて来訪された方は、必ず学術書や論文などのオーソライズされた資料を併せてご参照ください。むしろ僕自身の学習のプロセスを記録しているだけの備忘録的記事が多いため、誤りもまた多いはずです。後学のため、誤りを見つけた場合はコメント欄などでお知らせいただけると有難いです。


また、ブログの中で取り上げられているデータ分析事例・データセット・分析上の知見など全ての記述は、いずれも特別に明記されていない限りはいかなる実在する企業・組織・機関の、いかなる個別の事例とも無関係です。ブログ記事内容は予告なく公開後に改変されることがあります。改変した事実は明示されることもあれば明示されないこともあります。


このブログはあくまでも僕自身にとっての備忘録であり、利便を考えてweb上に公開しているだけという位置付けのものです。中にはその見かけとは全く別の真の目的をもって書かれた記事もあります。以上の点をご理解の上、お読み下さると有難いです。

id:TJOとは何者なのか


データサイエンティスト・機械学習(人工知能)エンジニアとは何か

データ分析を仕事にしたければ読むべき本は何か

続きを読む

自己回帰型モデルによる事前学習スキームの限界と、ビジネス実務の場で見える現実と

早いもので、2024年も恒例の年末回顧記事を書く時期になりました。ということで、今回は一年を通じて話題に事欠かなかった生成AIに関する最近の論争と、一方でBtoBのビジネスの現場で感じている現実とを綴ることで、今年の振り返りといたします。

続きを読む

ビジネス実務で「正しいデータ分析」を行うということ

一般に、ビジネス実務におけるデータ分析というと、経営者や各種ビジネス部門の責任者といったステークホルダーたちが「ビジネス上の意思決定のためのエビデンス」を得る目的で、往々にして社内外のデータ分析の専門家たちに依頼して実施させるものであることが多いかと思います。


そうすると、データ分析業界では太古の昔からの鉄板あるあるネタである「上が〇〇という結果が欲しいと言っているので〇〇という結果になるようにしろ」とか「お客さんが〇〇は経営判断に必要なので分析結果に入れろと言っているから〇〇だけは外さないでくれ」というような、統計学や機械学習の「外側」にある事情が分析プロセスに割り込んでくるという事態が、ほぼ常につきまといます。


で、そういった事態にどう対処するかは、僕個人の観測範囲ではデータ分析業界の中でも割と幅広くやり方が分かれるように見えます。「毅然として断る」という人もいれば、「仕事である以上仕方ないので受け入れる」という人もいて、さらにそのスペクトラムまで入れるとデータ分析者の数だけバリエーションがあると言っても過言ではなさそうです。


そこで、ここ数年僕自身がビジネス実務向けのデータ分析(主に統計分析:もっと言えばMMM)を手掛ける中で気づいたことを中心にまとめながら、そういったビジネス実務の現実の中でどのようにして「正しいデータ分析」をやっていくか、そして何故そうするべきかという点について論じてみようと思います。

続きを読む

LLMには"Super Weights"があるという話と、現実のヒトの脳との関連性を考えてみる

X (Twitter)を眺めていたら、面白そうな論文が流れてきました。それがこちらです。

実際に流れてきたのはこちらの紹介記事なんですが、その要約を読んだ限りでもなかなかに興味深い現象であるように思われます。

ということで、何番煎じかもはや分かりませんがこのブログでも備忘録的に取り上げてみようと思います。が、ただそれだけでは面白くないので、この論文を読んで僕が個人的に考えた「現実のヒトの脳との関連性」についても論じてみることにします。

続きを読む