StatModeling Memorandum

StatModeling Memorandum

StanとRとPythonでベイズ統計モデリングします. たまに書評.

2018-01-01から1年間の記事一覧

統計・機械学習・R・Pythonで用途別のオススメ書籍

比較的読みやすい本を中心に紹介します。今後は毎年このページを更新します。 微分積分 高校数学をきちんとやっておけばそんなに困ることないような。偏微分とテイラー展開は大学演習のような本でしっかりやっておきましょう。ラグランジュの未定乗数法のよ…

TensorFlowで統計モデリング

とある勉強会で「TensorFlowで統計モデリング」というタイトルで講義をしました。聴衆はPythonユーザが多く、データ量が大きい問題が多そうだったので、StanよりもTensorFlowで点推定するスキルを伸ばすとメリットが大きいだろうと思ってこのようなタイトル…

Tokyo.R#70で「統計モデリングで癌の5年生存率データから良い病院を探す」というタイトルで話しました

以下のイベントで話しました。 第70回R勉強会@東京(#TokyoR): ATND 発表資料は以下です。 統計モデリングで癌の5年生存率データから良い病院を探す from Kentaro Matsuura 前にやった解析において、最終的なモデルにいたるまでのプロセスとモデリングのコ…

PythonのSymPyで変分ベイズの例題を理解する

この記事の続きです。 ここではPRMLの10.1.3項の一変数ガウス分布の例題(WikipediaのVariational_Bayesian_methodsのA basic exampleと同じ)をSymPyで解きます。すなわちデータが に従い*1、とが、 に従うという状況です。ここでデータ()が得られたとし…

統計モデリングで癌の5年生存率データから良い病院を探す

概要 2017年8月9日に国立がん研究センターは、がん治療拠点の約半数にあたる全国188の病院について、癌患者の5年後の生存率データを初めて公表しました(毎日新聞の記事)。報告書は国立がん研究センターが運営するウェブサイトからダウンロードできます(こ…

逆温度1の事後分布のサンプルからWBICを計算する

この記事は以下のツイートを拝見してやってみようと思いました。 #統計 #Baysian もしも「元論文の式(20)をβ₁=1, β₂=1/log nの場合に適用した公式を使ってWBICを計算すると事後分布のサンプルの違いによる分散が大きくなる」とか「直接逆温度1/log nの事後分…

Stanの関数を使ってRを拡張して高速化する

(C++に自動で変換される)Stanの関数を使ってRを拡張できる機能が、Stan/RStanの2.16で実装開始されて2.17でほぼ完成しました。Rを高速化するためにC++(とRcpp)はあまり書きたくないけれど、Stanの関数なら書いてもいいよという僕得な機能です。この記事…