ããããç©è³ªã®æ§æè¦ç´ ã¯ãã¤ãã¤ããã¨ãæ³¢ã§ããç²åã§ããããããã
æ®éã®å¸¸èããã¯å
¨ãã¤ã¡ã¼ã¸ã§ããªããéååå¦æ大ã®è¬(?!)ã«çµæ¢ç¬¦ãæã¤ã¨ãããã£ã¦ãã¾ããã
ãã®å³ã«æããã話ãç解ã§ããã¨ããæ³¢ã¨ç²åã®è¬ã¯è§£æ¶ãã¾ãï¼
â
æã
ã観測ã§ããç©çéã¯ã対象ã®ç¶æ
ã«ã¨ã«ãã¼ãæ¼ç®åãæ½ããåºæå¤ã§ããã
ããããéååå¦ã®åæã¨ãã¦åãå
¥ãããã¨ã«ãã¾ãã
ï¼ãªããããªãããã¨èããã¦ãå°ãã
ããªããã¯åãããªãããã©ããã®åæãåãå
¥ããã¨ä¸äºãã¾ããããï¼
ã¨ã«ãã¼ãæ¼ç®åãç©ççã«æºããã¹ãæ¡ä»¶ã示ããã®ãããã¤ã¼ã³ãã«ã¯ã®éåæ¹ç¨å¼ã§ãã
ã< ãã¤ã¼ã³ãã«ã¯ã®éåæ¹ç¨å¼ >
ãã ih~(dO^/dt) = [ O^, H^ ] = O^ H^ - H^ O^
ããããO^ : æéå¤åãå«ãã¨ã«ãã¼ãæ¼ç®åãã¤ã¾ã O^ â¡ O^(t)
ããããH^ : ããã«ããã¢ã³ãç³»ã®ã¨ãã«ã®ã¼ã表ãæ¼ç®å
ããããh~ : ã¨ã¤ããã¼ããã©ã³ã¯å®æ°hã2Ïã§å²ã£ããã®ã
ãããã[] : 交æé¢ä¿ã表ãè¨å·ã[ A, B ] â¡ AB - BA ã¨ãããã¨ã
ããï¼ããããªããã¨èããã¦ãå°ããã¨ããããåæã¨ãã¦åãå ¥ãã¦ããããï¼
以ä¸ã§ã¯ã調åæ¯ååã®éååãã¨ãã¨ãèãã¦ã¿ã¾ãã
調åæ¯ååã¨ããã®ã¯æãåç´ãªãæ³¢ãã§ãããæ®éã«ï¼å¤å
¸çã«ï¼è¦ãéãé£ç¶çã§ã
ã©ãã«ãç²åã¨ãã¦ã®ãã¨ã³ã¨ã³ã®ãæ§è³ªãæã¡åããã¦ããªãããã«æãã¾ãã
ã¨ããããä¸ã®â
éååå¦ã®åæãåãå
¥ãããªããæ³¢ããèªç¶ã«ãã¨ã³ã¨ã³ã®ãæ§è³ªãå°ãåºãããã®ã§ãã
å¤å ¸ç©çã§ã調åæ¯ååã®éåæ¹ç¨å¼ã¯ã次ã®ããã«ãªã£ã¦ãã¾ããã
ãH = (p^2 / 2 m) + (m Ï^2 / 2) q^2ãã-- ããã«ããã¢ã³ãç³»å ¨ä½ã®ã¨ãã«ã®ã¼
ãdq/dt = ãâH/âp = ãp / m
ãdp/dt = - âH/âq = - m Ï^2 q
ãããq ï¼ä½ç½®ãå®ã¯ q(t)ã¨ããæéã®é¢æ°
ãããp ï¼éåéãå®ã¯ä½ç½®ã®å¾®å p(t) â¡ dq(t)/dt
ãããm ï¼ç²åã®è³ªé
ãããÏï¼è§æ¯åæ°
ãã®å¤å
¸çãªèª¿åæ¯ååããéåçãªæ¯ååã«ç½®ãæããã«ã¯ã
ãâ
ã®åæã«å¾ã£ã¦ãä½ç½® p ããä½ç½®æ¼ç®å p^ ã«ç½®ãæããã
ãâ
ã®åæã«å¾ã£ã¦ãéåé q ããéåéæ¼ç®å q^ ã«ç½®ãæããã
ãâ
ã®åæã«å¾ã£ã¦ãç³»å
¨ä½ã®ã¨ãã«ã®ã¼ H ããããã«ããã¢ã³æ¼ç®å H^ ã«ç½®ãæããã
ã¨ãã£ãå
·åã«ãå
¨ã¦ã®ç©çéãæ¼ç®åã«ç½®ãæãã¾ãã
å¤å
¸çãªç©çéï¼ï¼åã®æ°åï¼ã¨ãã¨ã«ãã¼ãæ¼ç®åã§ã¯ä½ãéãã®ãï¼
ã¨ã«ãã¼ãæ¼ç®åã®å®ä½ã¯ãè¡åã§ããï¼è¡åã«ãã£ã¦è¡¨ç¾ãããã¨ãã§ãã¾ãï¼
ç©çéã¯ï¼åã®æ°åã§ã¯ãªããè¤æ°åï¼æã«ã¯å¯ç®ç¡éåï¼ã®æ°åã®å¡ã«ãªãã¾ãã
è¨ç®ä¸ã®æã大ããªéãã¯ãæãç®ã®é åºã«ãã£ã¦çãéã£ã¦ãããã¨ãããã¨ã§ãã
å¤å
¸ç©çã®å ´åãæãç®ã®çµæã¯é åºã«ãããªãã®ãå½ç¶ãªã®ã§ pq = qp ã§ãã
ã¨ãããæ¼ç®åï¼è¡åï¼ã®çµæã¯é åºã«ãã£ã¦å¤ãã£ã¦ãã¦ãp^q^ â q^p^ ãªã®ã§ãã
ããã§ããã¾ï¼ã¤ã®åæ
ã< ä¸ç¢ºå®æ§åç >
ãã [ q^ , p^ ] = q^p^ - p^q^ = i h~
ãè¦è«ãã¾ããï¼ããããªãããã以ä¸åæï¼
ããã¾ã§ã®åæããã調åæ¯ååãã確ãã«ãã¤ã¼ã³ãã«ã¯ã®éåæ¹ç¨å¼ãæºããã¦ãããã¨ã確èªã§ãã¾ãã
ãH^ = (p^ ^2 / 2 m) + (m Ï^2 / 2) q^ ^2 ãã -- ããã«ããã¢ã³
ã»q^ ããã¤ã¼ã³ãã«ã¯éåæ¹ç¨å¼ã«å ¥ãã¦ã¿ã
ãi h~ (dq^/dt) = [ q^, H^ ]
ã = q^ ( (p^ ^2 / 2 m) + (m Ï^2 / 2) q^ ^2 ) - ( (p^ ^2 / 2 m) + (m Ï^2 / 2) q^ ^2 ) q^
ã = (q^ p^ ^2 / 2 m) - (p^ ^2 q^ / 2 m)ããã -- q^ ^3 ã®é ã¯æ¶ãã
ã = (1 / 2 m) ( q^ p^ ^2 - p^ ^2 q^ )
ã = (1 / 2 m) ( (q^p^ - p^q^) p^ + p^ (q^p^ - p^q^) )ãã-- ããã§äº¤æåãä½ãåºãã®ããã½
ã = (1 / 2 m) ( [q^, p^] p^ + p^ [q^, p^] )ãã-- ä¸ç¢ºå®æ§åç [q^, p^] = i h~ ãé©ç¨
ã = (1 / 2 m) ( 2 i h~ p^ )
ãã¾ã¨ããã¨ã
ããdq^/dt = p^ / mãã-- ããã£ã¦ã調åæ¯ååã®éåæ¹ç¨å¼ï¼ã®çå²ãï¼ã ã
ã
ã»p^ ããã¤ã¼ã³ãã«ã¯éåæ¹ç¨å¼ã«å ¥ãã¦ã¿ã
ãi h~ (dp^/dt) = [ p^, H^ ]
ã = p^ ( (p^ ^2 / 2 m) + (m Ï^2 / 2) q^ ^2 ) - ( (p^ ^2 / 2 m) + (m Ï^2 / 2) q^ ^2 ) p^
ã = (p^ q^ ^2 m Ï^2 / 2) - (q^ ^2 p^ m Ï^2 / 2)ããã -- p^ ^3 ã®é ã¯æ¶ãã
ã = (m Ï^2 / 2) ( p^ q^ ^2 - q^ ^2 p^ )
ã = (m Ï^2 / 2) ( (p^q^ - q^p^) q^ + q^ (p^q^ - q^p^) )ãã-- ããã§äº¤æåãä½ãåºãã®ããã½
ã = (m Ï^2 / 2) ( [p^, q^] q^ + q^ [p^, q^] )ãã-- ä¸ç¢ºå®æ§åç [p^, q^] = - i h~ ãé©ç¨
ã = (m Ï^2 / 2) ( - 2 i h~ q^)
ãã¾ã¨ããã¨ã
ããdp^/dt = - m Ï^2 q^ãã-- ããã£ã¦ã調åæ¯ååã®éåæ¹ç¨å¼ï¼ã®çå²ãï¼ã ã
ããã¾ã§ã§åãã£ããã¨ãå¤å
¸çãªèª¿åæ¯ååã¯ããã®ã¾ã¾éååå¦ã«ãã¦ã¯ã¾ãã
ã¤ã¾ãã調åæ¯ååã¯ããã¤ã¼ã³ãã«ã¯éåæ¹ç¨å¼ã®è§£ã®ï¼ã¤ã«ãªã£ã¦ãããã
次ã«ãp^ 㨠q^ ã以ä¸ã®æ§ã«çµã¿åããã¦ãæ°ããªæ¼ç®å a^ 㨠aâ ^ ãä½ãã¾ãã
ãa^ã = (1 / 2 h~) ( m âÏ q^ + (i / m âÏ) p^ )
ãaâ ^ = (1 / 2 h~) ( m âÏ q^ - (i / m âÏ) p^ )
ãªãåçªã«ãããªãã®ãç·¨ã¿åºããã®ãããããã£ã©ãã¯ã¨ãã人ãèãåºãããããã®ã§ããã
ã¯ã£ããè¨ã£ã¦å¡äººã®ç§ã«ã¯ã天æã®èãããã¨ã¯ç解ã§ãã¾ããã
å®ã¯ãã® a^ 㨠aâ ^ ã«ã¯éã ã£ãç¹æããã£ã¦ã
ã< 交æé¢ä¿ãï¼ã«ãªã >
ãã[ a^, aâ ^ ] = 1
ã¨ãªã£ã¦ãã¾ããï¼è¨ç®ããã¨ãããªãã¾ãããæãªãã©ãããï¼
ãããããããªãããã«å·§å¦ã«é¸ã³åºãããã¨è¨ãã¹ãã§ãããã
ãããã©ããããã¨ä»ã®æç¹ã§ã¯æãããããã¾ããããããã¦å¤©æã®æ·±æ
®é è¬ã«æ°ä»ãæãæ¥ãã§ãããããã
a^ 㨠aâ ^ ã¯ãåã«æ¼ç®åã®çµã¿åãããå¤ããã ãã«éãã¾ããã
éã«ãa^ 㨠aâ ^ ãããå
ã® p^ 㨠q^ ã«æ»ããã¨ã ã£ã¦ã§ãã¾ããçµã¿åãããå¤ããã ãã§ãããã
ãq^ = ãããâ(h~ / 2mÏ) (a^ + aâ ^)
ãp^ = (1/i) â(mh~Ï / 2) (a^ - aâ ^)
ã¤ã¾ããa^ 㨠aâ ^ ã®çµã¿åããã¨ã p^ 㨠q^ ã®çµã¿åããã®ç©ççãªå
容ã¯åããªã®ã§ãã
ãã® a^ 㨠aâ ^ ã§ãã£ã¦ãããã«ããã¢ã³ H^ ãæ¸ãç´ãã¦ã¿ã¾ãã
ãH^ = (p^ ^2 / 2 m) + (m Ï^2 / 2) q^ ^2
ãã= (1/2m) ( (1/i) â(mh~Ï / 2) (a^ - aâ ^) ) ^2
ããããã+ (m Ï^2 / 2) ( (1 / 2 h~) ( m âÏ q^ - (i / m âÏ) p^ ) ) ^2
ãã= ( - h~ Ï / 2ã»2 ) ( a^ ^ 2 - a^ aâ ^ - aâ ^ a^ + aâ ^2 )
ããããã+ (h~ Ï / 2ã»2 ) ( a^ ^ 2 + a^ aâ ^ + aâ ^ a^ + aâ ^2 )
ãããããããã-- æ¼ç®åã®æãç®ã«ã¯é åºããããã¨ã«æ³¨æãåç´ãªå±éã§ã¯ãªãã
ãã= (h~ Ï / 4) ( 2 a^ aâ ^ + 2 aâ ^ a^ )
ãã= (h~ Ï / 2) ( a^ aâ ^ + aâ ^ a^ )
ãã= (h~ Ï / 2) ( a^ aâ ^ - aâ ^ a^ + 2 aâ ^ a^ )ãã-- ãã¾ã交æé¢ä¿ãä½ãåºãã®ã
ãã= (h~ Ï / 2) ( 1 + 2 aâ ^ a^ )
ãã¾ã¨ããã¨
ããH^ = h~ Ï ( aâ ^ a^ + 1/2 )ããã-- æ¸ãæããããã«ããã¢ã³
ãã®ããã«ããã¢ã³ã«å«ã¾ãã aâ ^ a^ ã¨ããé¨åã«ã¯ã
ä½ãã¨ãã«ã®ã¼ã®å¡ã表ããããªãæ¬è³ªçãªæå³ãããããã§ãã
ããã§ãæ¼ç®å aâ ^ a^ ãã¾ã¨ããæ¼ç®åããããã« N^ â¡ aâ ^ a^ ã¨åå®ç¾©ãã¦ããã®æ§è³ªãæãä¸ãã¦ã¿ã¾ãã
ã N^ â¡ aâ ^ a^
N^ ã¯ã¨ã«ãã¼ãæ¼ç®åãçµã¿åããã¦ä½ã£ãæ¼ç®åã§ããã
ä¾ç¶ã¨ãã¦ââ
éååå¦ã®åæâã«å¾ãã¨ã«ãã¼ãæ¼ç®åã«ãªã£ã¦ãã¾ãã
N^ ã®æ£ä½ã¾ã è¬ã§ãããã¨ã«ãããã®åºæå¤ãä½ããã®ç©çéã表ãã¦ããã¯ãã§ãã
ãã¾ãN^ ãç¶æ
Ï> ã«ä½ç¨ããã¦ãåºæå¤ n ãå¾ãããã®ã ã¨ãã¾ãããã
ãN^ |Ï> = n |Ï>
次ã«ãN^ ã aâ ^|Ï> ã¨ããç¶æ
ã«ä½ç¨ãããã¨ãã®åºæå¤ãç¥ãããã®ã§ããã
ãã®ããã®äºåæºåã¨ãã¦ã[ N^, aâ ^ ] ã調ã¹ã¦ããã¾ãã
ãã[ N^, aâ ^ ]
ã= [aâ ^ a^, aâ ^ ]
ã= aâ ^ a^ aâ ^ - aâ ^ aâ ^ a^
ã= aâ ^ (a^ aâ ^ - aâ ^ a^)
ã= aâ ^ [ a^, aâ ^ ]ãããã-- 交æé¢ä¿ [ a^, aâ ^ ] = 1 ãã
ã= aâ ^
ãã¾ã¨ããã¨ã
ãã[ N^, aâ ^ ] = aâ ^ãã-- (ââ å¼)
ãã® (ââ å¼)ã使ã£ã¦ N^ aâ ^ |Ï> ãæ±ãã¦ã¿ã¾ãã
ããN^ aâ ^ |Ï>
ã = aâ ^ N^ |Ï> + aâ ^ |Ï>ããã-- ä¸ã®(ââ å¼)ãããN^ aâ ^ = aâ ^ N^ + aâ ^
ã = aâ ^ n |Ï> + aâ ^ |Ï>
ã = (n + 1) aâ ^ |Ï>
åºæå¤ã (n + 1) ã«ãªã£ã¦ãããã¨ã«çç®ãã¦ãã ããã
ãaâ ^ ã¨ããæ¼ç®åã¯ãN^ ã¨ããæ¼ç®åã表ãç©çéãï¼ã ãå¢ããã¦ããã
ãããéè¦ãªçµè«ã
ä¼¼ããããªãã¨ããN^ ã a^ |Ï> ã¨ããç¶æ
ã«ä½ç¨ãããã¨ãã«ãèµ·ããã¾ãã
äºåæºåã¨ãã¦ã[ N^, a^ ] ã調ã¹ã¦ããã¾ãã
ãã[ N^, a^ ]
ã= [aâ ^ a^, a^ ]
ã= aâ ^ a^ a^ - aâ ^ a^ a^
ã= (a^ aâ ^ - aâ ^ a^) a^
ã= [ a^, aâ ^ ] a^ãããã-- 交æé¢ä¿ [ a^, aâ ^ ] = 1 ãã
ã= - a^
ãã¾ã¨ããã¨ã
ãã[ N^, a^ ] = - a^ãã-- (âå¼)
ãã® (âå¼)ã使ã£ã¦ N^ a^ |Ï> ãæ±ãã¦ã¿ã¾ãã
ããN^ a^ |Ï>
ã = a^ N^ |Ï> - a^ |Ï>ããã-- ä¸ã®(âå¼)ãããN^ a^ = a^ N^ - a^
ã = a^ n |Ï> - a^ |Ï>
ã = (n - 1) a^ |Ï>
åºæå¤ã (n - 1) ã«ãªã£ã¦ãããã¨ã«çç®ãã¦ãã ããã
ãa^ ã¨ããæ¼ç®åã¯ãN^ ã¨ããæ¼ç®åã表ãç©çéãï¼ã ãæ¸ããã¦ããã
ãããããï¼ã¤ã®éè¦ãªçµè«ã§ãã
ããã¾ã§ãæ´çããã¨ã
ã»æ¼ç®å N^ ã¯ãã¨ãã«ã®ã¼ï¼ããã«ããã¢ã³ï¼ã®ä¸é¨ã表ãã¦ããã
ã»æ¼ç®å aâ ^ ã¯ãN^ ã®ç¤ºãå¤ï¼ã¨ãã«ã®ã¼ï¼ãï¼ã ãå¢ããã
ã»æ¼ç®å a^ ãã¯ãN^ ã®ç¤ºãå¤ï¼ã¨ãã«ã®ã¼ï¼ãï¼ã ãæ¸ããã
ã©ãããæ¼ç®åã®æ£ä½ãè¦ç ´ãã¨ããããããã§ãã
ã»æ¼ç®å N^ ã¯ãåæ°æ¼ç®åã¨è¨ã£ã¦ãâã¨ãã«ã®ã¼ã®å¡âã®æ°ã表ãã¦ããã
ã»æ¼ç®å aâ ^ ã¯ãçææ¼ç®åã¨è¨ã£ã¦ãç²åãï¼åä½ãåºãä½ç¨ã表ãã
ã»æ¼ç®å a^ ãã¯ãæ¶æ» æ¼ç®åã¨è¨ã£ã¦ãç²åãï¼åæ¸ããä½ç¨ã表ãã
ãã°ããããâç²åâã®æ£ä½ã§ãã
調åæ¯ååã®ã¨ãã«ã®ã¼ã¯ãã¨ã³ã¨ã³ã®å¤ï¼åºæå¤ï¼ããåããã¨ãã§ããªãã
ãã®ãã¨ã³ã¨ã³ã®ã¨ãã«ã®ã¼ã®å¡ããï¼åãï¼åã¨æ°ãã¦ãâç²åâã¨å¼ã¶ãã¨ã«ãããã
以ä¸ããæ³¢ã¨ç²åãåãã§ããæ¬è³ªçãªçç±ã§ãã
* éåã¯æ³¢ã§ç解ã§ãã >> [id:rikunora:20120507]
ããã§ãã¨ã³ã¨ã³ã®ãã¡ã«ããºã ãåãã£ãã®ã§ããã
ããã§ããããã§æ¼ç®åã«ãã£ã¦ç¤ºããããããªç²åã¨ã
ç§ãã¡ãæ¥å¸¸çã«æãæãç²åã¨ã®éã«ã¯ãã¾ã ã®ã£ãããããããã«æãã¾ãã
æ大ã®ã®ã£ããã¯ã
ã(1) æ¼ç®åã«ãã£ã¦ç¤ºãããç²åã¯âã¨ãã«ã®ã¼ã®å¡âã§ãããåãå ´æã«ããã¤ã§ãå
¥ãã
ã(2) ä¸æ¹ãæ¥å¸¸çã«æãæãç²åã¯ãå ´æãå æãããã®ãã§ãåãå ´æã«ï¼ã¤ããå
¥ããã¨ãã§ããªãã
å®ã¯ã(1)ã®ãããªç²åã®ãã¨ããã½ã³ã¨å¼ã³ã(2)ã®ãããªç²åããã§ã«ããªã³ã¨å¼ãã§åºå¥ãã¦ãã¾ãã
ãã½ã³ã®ä»£è¡¨ä¾ã¯å
ï¼å
åï¼ã§ãã
確ãã«ãå
ã§ããã°åãå ´æã«ããã¤éãªãåã£ã¦ãã¦ãããããã¯ãªãã§ãããã
å
ãç²åã ã¨ããã®ã¯ãä¸ã®æ¼ç®åã«ç¤ºãããããªæå³ã§ãã¨ãã«ã®ã¼ãã¨ã³ã¨ã³ã«ãªããã¨ãããã¨ã§ãã
ä¸æ¹ãç§ãã¡ãæ®éã«æãæããããªå ´æãå æããç©è³ªã¯ãã§ã«ããªã³ã§ãé»åãé½åãªã©ã代表ä¾ã§ãã
ãªããã§ã«ããªã³ã®ããã«ãå ´æãå æããç²åãããã®ã§ããããï¼
å®ã¯ããã¤ã¼ã³ãã«ã¯æ¹ç¨å¼ã®è§£ã¯ãä¸ã«ç¤ºãããã½ã³ã ãã§ã¯ãªãã£ãã®ã§ãã
ä¸ãè¦ç´ãã¦ã¿ãã¨ã
ã»å¤å
¸çãªèª¿åæ¯ååã¯ããã¤ã¼ã³ãã«ã¯éåæ¹ç¨å¼ã®è§£ã®ï¼ã¤ã«ãªã£ã¦ãã
ã¨ãããã¨ã§ããããéã«
ã»ãã¤ã¼ã³ãã«ã¯éåæ¹ç¨å¼ã®è§£ã¯ãå¤å
¸çãªèª¿åæ¯ååã ãã§ãã
ã¨ã¯è¨ã£ã¦ãã¾ããããã
ããã¸ã天ä¸ãçã§ãæåã«ã©ããã£ã¦æãã¤ããã®ãå
¨ãè¬ãªã®ã§ããã
ãã¤ã¼ã³ãã«ã¯éåæ¹ç¨å¼ã«ã¯ããã¾ã²ã¨ã¤ã以ä¸ã®ãããªè§£ãããã¾ãã
ãH^ = i Ï q^ p^ãã-- ããã«ããã¢ã³
ããp^ q^ + q^ p^ â¡ { p, q } = 0
ãããã{} ã¯å交æé¢ä¿ã{ A, B } = AB + BA ã表ãè¨å·
ããp^ ^2 = h~ Ï / 2
ããq^ ^2 = h~ / 2 Ï
å
ã®ãã½ã³ã®å ´åãå¤å
¸ç調åæ¯ååï¼ã®å¯¾å¿ç©ï¼ã¨ããæ確ãªã¤ã¡ã¼ã¸ãããã¾ãããã
ä»åº¦ã®è§£ã®å ´åãå¤å
¸çã«å¯¾å¿ãããããªç©ççã¤ã¡ã¼ã¸ãããã¾ããã
ããã§ããããã§ç¤ºãããã㪠H^ p^ q^ ã®çµã¿åããã¯ã
確ãã«ï¼éåçãªï¼èª¿åæ¯ååã®æ¹ç¨å¼ãæºããã¦ããã®ã§ãã確èªãã¦ã¿ã¾ãããã
ã»q^ ããã¤ã¼ã³ãã«ã¯éåæ¹ç¨å¼ã«å ¥ãã¦ã¿ã
ãi h~ (dq^/dt) = [ q^, H^ ]
ã = i Ï ( q^ q^ p^ - q^ p^ q^ )
ãããããã㧠q^ q^ p^ - q^ p^ q^
ãããããã= q^ ( q^ p^ - p^ q^ )ãã-- ãã¾ãå交æé¢ä¿ã«ãã£ã¦ãã
ãããããã= q^ ( 2 q^ p^ - (p^ q^ + p^ q^) )
ãããããã= 2 q^ ^2 p^
ã = i Ï ( 2 q^ ^2 p^ )
ã = i Ï ( 2 (h~ / 2 Ï) p^ )
ã = i h~ p^
ãã¾ã¨ããã¨ã
ããdq^/dt = p^ãã-- ããã£ã¦ã調åæ¯ååã®éåæ¹ç¨å¼ï¼ã®çå²ãï¼ã ã
ã
ã»p^ ããã¤ã¼ã³ãã«ã¯éåæ¹ç¨å¼ã«å ¥ãã¦ã¿ã
ãi h~ (dp^/dt) = [ p^, H^ ]
ã = i Ï ( p^ q^ p^ - p^ p^ q^ )
ãããããã㧠q^ q^ p^ - q^ p^ q^
ãããããã= q^ ( q^ p^ - p^ q^ )ãã-- ãã¾ãå交æé¢ä¿ã«ãã£ã¦ãã
ãããããã= q^ ( q^ p^ + p^ q^ - 2 p^ q^ )
ãããããã= q^ ( - 2 p^ q^ )
ã = i Ï ( -2 q^ p^ ^2 )
ã = i Ï ( -2 q^ h~ Ï / 2 )
ã = - i h~ Ï^2 q^
ãã¾ã¨ããã¨ã
ããdp^/dt = - Ï^2 q^ãã-- ããã£ã¦ã調åæ¯ååã®éåæ¹ç¨å¼ï¼ã®çå²ãï¼ã ã
確ãã«ããã種ã®èª¿åæ¯ååã«ãªã£ã¦ããããã§ããããå¤å
¸çã¤ã¡ã¼ã¸ã¯å
¨ã湧ãã¾ãããã©ã
次ã«ããã½ã³ã®ã¨ãã«ãã£ãã®ã¨åãããã«ãçææ¶æ»
æ¼ç®åãä½ã£ã¦ã¿ã¾ãã
ä»åº¦ã®æ¼ç®åã¯ãc^ 㨠câ ^ ã¨ããè¨å·ã«ãã¦ããã¾ãããã
ãc^ã = (1 / 2 h~) ( âÏ q^ + (i / âÏ) p^ )
ãcâ ^ = (1 / 2 h~) ( âÏ q^ - (i / âÏ) p^ )
ä»åº¦ã® c^ 㨠câ ^ ã«ãéã ã£ãç¹æããã£ã¦ã
ã< å交æé¢ä¿ãï¼ã«ãªã >
ãã{ c^, câ ^ } = 1
ã< èªèº«å士ã®å交æé¢ä¿ãï¼ã«ãªã >
ãã{ c^, c^ } ãã= 0ããã¤ã¾ã c^ c^ ãã= 0
ãã{ câ ^, câ ^ } = 0ããã¤ã¾ã câ ^ câ ^ = 0
ã¨ãªã£ã¦ãã¾ããï¼è¨ç®ããã¨ãããªãã¾ãããæãªãã©ãããï¼
æåã«æãã¤ãã人ã¯ããã®å交æé¢ä¿ããé¡ã£ã¦è§£ãè¦ã¤ããã®ã ã¨æãã¾ãããã¶ãã
ããã«ããã¢ã³ H^ ã c^ 㨠câ ^ ã§æ¸ãç´ãã¦ã¿ãã¨ã
ãH^ = i Ï p^ q^
ãã = i Ï ( â(h~ / 2Ï) (c^ + câ ^) ) (1/i) âh~Ï / 2) (c^ - câ ^)
ãã = (h~ Ï / 2) ( c^ ^2 - c^ câ ^ + câ ^ c^ - câ ^ ^2 )ãã-- èªèº«å士ã®å交æé¢ä¿ã¯ï¼
ãã = (h~ Ï / 2) ( - c^ câ ^ + câ ^ c^ )ããã-- ãã¾ãå交æé¢ä¿ã«ãã£ã¦ãã
ãã = (h~ Ï / 2) ( - c^ câ ^ - câ ^ c^ + 2 câ ^ c^ )
ãã = (h~ Ï / 2) ( - 1 + 2 câ ^ c^ )
ãã¾ã¨ããã¨
ããH^ = h~ Ï ( câ ^ c^ - 1/2 )ããã-- æ¸ãæããããã«ããã¢ã³
å
ã®ãã½ã³ã«ä¼¼ã¦ãã¾ããããã§ã«ããªã³ã®å ´åã- 1/2 ã®ã¨ããã®ç¬¦å·ããã¤ãã¹ã«ãªã£ã¦ãã¾ãã
ç²åã®åæ°æ¼ç®åã«ã¤ãã¦ãããã½ã³ã®å ´åã¨åãããã«å®ç¾©ãã¾ãã
ãN^ â¡ câ ^ c^
ãã¾ãN^ ãç¶æ Ï> ã«ä½ç¨ããã¦ãåºæå¤ n ãå¾ãããã®ã ã¨ãã¾ãããã
ãN^ |Ï> = n |Ï>
ä»åº¦ã¯ãN^ ãç¶ãã¦ï¼åä½ç¨ãããã¨ãèãã¦ã¿ã¾ããããã¨ããã
ãN^N^ = câ ^ c^câ ^ c^
ããã = câ ^ (1 - câ ^ c^) c^ããã-- å交æé¢ä¿ãã c^câ ^ = 1 - câ ^ c^
ããã = câ ^ (c^ - câ ^ c^ c^)ããã-- c^c^ = 0 ã§ãã£ã
ããã = câ ^ c^
ããã = N^
ãã¤ã¾ããN^N^ ã¨ï¼åç¶ãã¦ä½ç¨ããçµæã¯ãN^ ï¼åä½ç¨ãããçµæã¨åãã ã¨ãããã¨ã§ãã
ãN^N^ = N^
ãN^N^ - N^ = 0
ãN^ (N^ - 1) = 0
ãã®å ´åãN^ ã®åºæå¤ n ã¯ã0 ã¾ã㯠1 ã®ããããã«éããã¾ãã
å
ã®ãã½ã³ã®å ´åãåºæå¤ã¯ 0, 1, 2, ⦠ã¨ãéè² ã®æ´æ°å
¨ã¦ã ã£ãã®ã§ããã
ä»åº¦ã®ãã§ã«ããªã³ã®å ´å㯠0 㨠1 ã®ï¼éãã ããªã®ã§ãã
ãã®ç¹ããã½ã³ã¨ãã§ã«ããªã³ã®å®è³ªçãªéãã§ãã
ãã½ã³ã¨åæ§ããã§ã«ããªã³ã以ä¸ã®ï¼ã¤ã®é¢ä¿ãæºããã¦ãã¾ãã
ãã[ N^, câ ^ ] = câ ^ãã-- (ââ å¼)
ãã[ N^, c^ ] ã= - c^ãã-- (âå¼)
確èªãã¦ã¿ã¾ãããã
ãã[N^, câ ^]
ã = [câ ^c^, câ ^]
ã = câ ^ c^ câ ^ - câ ^ câ ^ c^ãã-- câ ^câ ^=0 ãªã®ã§ãå¾ã®é ã¯æ¶ãã
ã = (1 - c^ câ ^) câ ^ããã-- å交æé¢ä¿ { c^, câ ^ } = 1 ãã câ ^ c^ = 1 - c^ câ ^
ã = câ ^ - c^ câ ^ câ ^ããã-- câ ^câ ^=0 ãªã®ã§ãå¾ã®é ã¯æ¶ãã
ã = câ ^ããã-- (ââ å¼) ã«ãªã£ã¦ãã
ããä¸æ¹ã確èªãã¾ãããã
ãã[N^, c^]
ã = [câ ^c^, c^]
ã = câ ^ c^ c^ - c^ câ ^ c^ãã-- c^c^=0 ãªã®ã§ãåã®é ã¯æ¶ãã
ã = - (1 - câ ^ c^) c^ããã-- å交æé¢ä¿ { c^, câ ^ } = 1 ãã c^ câ ^ = 1 - câ ^ c^
ã = - c^ + câ ^ c^ c^ããã-- c^c^=0 ãªã®ã§ãå¾ã®é ã¯æ¶ãã
ã = - c^ããã-- (âå¼) ã«ãªã£ã¦ãã
ãã½ã³ã¨åæ§ããã§ã«ããªã³ã§ã (ââ å¼) 㨠(âå¼) ãæºãããã¦ãããã¨ã確èªã§ãã¾ããã
ã¨ãããã¨ã¯ãcâ ^ 㨠c^ ã¯ï¼ãã½ã³ã¨åãããã«ï¼çæã»æ¶æ»
æ¼ç®åã«ãªã£ã¦ããã¯ãã§ãã
ã»åæ°æ¼ç®å N^ ã¯ãåºæå¤ 0 㨠1 ã®ï¼ç¶æ ããåããã¨ãã§ããªãã
ã»æ¼ç®å câ ^ ã¯ãN^ ã®ç¤ºãå¤ï¼ã¨ãã«ã®ã¼ï¼ãï¼ã ãå¢ããçææ¼ç®åã¨ãªã£ã¦ããã
ã»æ¼ç®å c^ ãã¯ãN^ ã®ç¤ºãå¤ï¼ã¨ãã«ã®ã¼ï¼ãï¼ã ãæ¸ããæ¶æ» æ¼ç®åã¨ãªã£ã¦ããã
ããããåãå ´æã«ï¼ã¤ããå
¥ããã¨ã®ã§ããªãããã§ã«ããªã³ã¨ããç²åã®æ£ä½ã§ãã
ä½ã¨ãã¢ã¯ãããã£ãã¯ãªè¨ç®ã§ããããããããã¾ã
追ã£ã¦ã¿ãã¨ãããã®ã§ããããã®è¨ç®ãé ããé åºè¯ã解ããé¡ã®ãã®ã¨éãã¾ãã
æåã«ã©ããã£ã¦æãã¤ããã®ãå
¨ããã£ã¦ã¤ãããªã®ã ããã©ã
ã¨ã«ããã©ããã®å¤©æãæãã¤ããçãå¾è¿½ãã§ç¢ºããã¦ã¿ãããããããªé¡ã®è¨ç®ãªã®ã§ãã
ã¨ããã§ããã¤ã¼ã³ãã«ã¯éåæ¹ç¨å¼ã®è§£ã¯ããã½ã³ã¨ãã§ã«ããªã³ã®ï¼ç¨®é¡ã§å
¨ã¦ãªã®ã§ããããï¼
ã©ããããã以å¤ã®è§£ããããããã®ã§ããããæ°å¦çã«ã¯ã
ä¾ãã°ãåºæå¤ã1,2,3ã®ï¼ã¤ã ãã«éããããã®ï¼åãç¶æ
ã«ï¼åã¾ã§å
¥ããç²åï¼ã¨ãã
åºæå¤ãï¼®åã ãã«éããããã®ï¼åãç¶æ
ã«ï¼®-1åã¾ã§å
¥ããç²åï¼ã¿ãããªãã®ãæ³åã§ããã§ãããã
ãããããããã解ã«ã¯ç©ççã«å¯¾å¿ãããã®ãè¦å½ããã¾ããã
â» ãã¨ãã¨ããªã³ã¨ãããã®ããããããã®ã§ãããç§ã®ç解ã®ç¯å²ãè¶
ãã¦ããã®ã§çç¥ã
æ³¢ã¨ç²åã®äºéæ§ãç解ããæ¹æ³ã¯ãã¤ã¾ãã¨ãããä¸ã«ç¤ºãããããªæ°ççãªæ¹æ³ä»¥å¤ããå¾ã¾ããã
æ¹ãã¦ãä¸ã®å¼ããã©ã£ã¦ã¿ã¦ä¸ããã
ããããä½ããã®å¤å
¸çç´è¦³çãªè§£éã«ç½®ãæãããã¨ãã§ããã§ããããï¼
ä¸ã«ã¯é©ç°çãªæè¦ã®æã¡ä¸»ããã¦ãããèªç¶ã«ã¤ã¡ã¼ã¸ãæãæãã¦ããã®ããããã¾ãããã
ãã®ã¤ã¡ã¼ã¸ãæ®éã®æè¦ã®æã¡ä¸»ã«ä¼ããã«ã¯ãçµå±ã®ã¨ããæ°å¼ã«é ¼ããããå¾ãªãã§ãããã
ããã®ä¸ã«ã¯ãæ°ççãªæ¹æ³ã§ããç解ã§ããªããã®ãããã
ããããããæ³¢ã¨ç²åã®äºéæ§ãèãããã¨ã®ãä¸çªã®ä¾¡å¤ã§ããããã«æãã¾ãã
åèã«ãããã®ï¼
ã¯ã£ããè¨ã£ã¦ãï¼ã¤ã ãèªãã§ãç解ã§ãã¾ããï¼
ï¼ã¨ãããã¨ã¯ããã¶ããã®ããã°è¨äºã ããèªãã§ãç解ã§ããªãï¼
幸ããªãã¨ã«ãã¤ã³ã¿ã¼ãããä¸ã«ãåªããå¤ãã®è§£èª¬ãããã®ã§ã
ããããéãã¦è¦æ¯ã¹ã¦ãããã¡ã«ãã ãã ãããã£ã¦ãã¾ãããããªãã®ã§ãã
å¤å ¸å ´ããéåå ´ã¸ã®é å¢è£ç¬¬2ç (KSç©çå°éæ¸)
- ä½è : é«æ©åº·,表實
- åºç社/ã¡ã¼ã«ã¼: è¬è«ç¤¾
- çºå£²æ¥: 2006/02/25
- ã¡ãã£ã¢: åè¡æ¬ï¼ã½ããã«ãã¼ï¼
- è³¼å ¥: 1人 ã¯ãªãã¯: 5å
- ãã®ååãå«ãããã° (4件) ãè¦ã
- ä½è : 京極ä¸æ¨¹
- åºç社/ã¡ã¼ã«ã¼: æè¡è©è«ç¤¾
- çºå£²æ¥: 2008/09/27
- ã¡ãã£ã¢: åè¡æ¬ï¼ã½ããã«ãã¼ï¼
- è³¼å ¥: 2人 ã¯ãªãã¯: 41å
- ãã®ååãå«ãããã° (6件) ãè¦ã
* ï¼¥ï¼ï¼¡ï¼®ã®ç©çå¦ -- éååå¦
>> http://homepage2.nifty.com/eman/quantum/contents.html
* æ°éåç©çå¦å ¥é (宮沢å¼æ)
>> http://www7.ocn.ne.jp/~miyazaw1/papers/newquantumphys.pdf
* éåè« (éææ¸ è±)
http://maya.phys.kyushu-u.ac.jp/~knomura/education/quantum-modern/notes1.pdf
* å ´ã®çè« (å®æ±ç 究室) -- 第ï¼ç« ç²åã®çææ¶æ»
>> http://phys.cool.coocan.jp/physjpn/field.htm
* å ´ã®éåè« (éªå¤§ç©çå¦ãªãã¼ã»ããã¼)
>> http://osksn2.hep.sci.osaka-u.ac.jp/~naga/kogi/handai-honor08/
â»è¿½è¨ï¼ãã³ã¡ãã
> ï¼ç²åã®èª¿åæ¯ååã®çææ¶æ»
æ¼ç®åã¯ç²åã®çææ¶æ»
ã¨ã¯è¨ããªãã®ã§ã¯ï¼
æ¬å½ã®ãã¨ãè¨ãã°ãã®éãã§ã
ã»èª¿åæ¯ååã空éã«ã³ã£ãã並ã¹ããã®ããå ´ãã§ããã
ã»ãå ´ãã®ä¸ã§çææ¶æ»
ããã®ãç²åã§ãã
ï¼åã®èª¿åæ¯ååã¯ãå ´ã®éåè«ã®å
¥ãå£ã«ãããããã
â»è¿½è¨ï¼ã³ã¡ã³ã覧ãã
ä¸è¨ã®ãã½ã³ï¼èª¿åæ¯ååããå¾ãããç²åçæ§è³ªï¼ãå
ã«ãã¦ã¯ãã¦ã
ãç²åç¶æ
ã®éãåããã§æ³¢ããå°åºããè¨äºãããã¾ãã
* T_NAKAã®é¿æ¿ããã° -- ãã·ã¥ã¬ã¼ãã£ã³ã¬ã¼ã®ç«ãã®ãã©ããã¯ã¹ã解ãã!!] _ åããããèªåã®ããã«
ï¼ï¼ï¼http://teenaka.at.webry.info/201211/article_23.html
ï¼ï¼ï¼http://teenaka.at.webry.info/201211/article_27.html
ï¼ï¼ï¼http://teenaka.at.webry.info/201211/article_29.html
ããã«ãé¢é£æ¸ç±ã®ç´¹ä»
* ã¨ãæ¥è¨ -- ãã·ã¥ã¬ã¼ãã£ã³ã¬ã¼ã®ç«ãã®ãã©ããã¯ã¹ã解ãã!ï¼å¤æ¾¤æ
>> http://blog.goo.ne.jp/ktonegaw/e/13b6c033f1ea5ef2b647e6eb1e374222