è²·ãç©ãããã¨ããããããªãåºã§å°å
¥ããã¦ããã®ããã¤ã³ãå¶åº¦ã
è²·ã£ãéé¡ã®ä¸é¨ããã¤ã³ãã¨ããå½¢ã§éå
ãããä»çµã¿ã§ãã
ãã¤ã³ããéå
ãããã¨ãã«ããã®å ´ã§ä½¿ããã貯ãã¦æ¬¡å以éã«åããã
é¸æã§ãããåºãããã¾ããï¼ã¨ããã·ã«ã¡ã©ã¨ããï¼
ããã¤ã³ãã使ãã«ãªãã¾ããï¼ãã¨èãããã¨ã使ãã¹ããã貯ããã¹ãããã¡ãã£ã¨è¿·ãã¾ãããã
ãã£ãã¨ä½¿ã£ã¦ãã¾ãã®ã¨ã貯ããã ã貯ãã¦ä¸æ°ã«ä½¿ãã®ã¨ãæããã¦ã©ã¡ãããå¾ãªã®ã§ããããï¼
åé¡ãåç´åãã¦ã次ã®ï¼ãã¿ã¼ã³ãæ¯è¼ãã¦ã¿ã¾ãããã
ã»ååã®å¤æ®µã¯ 1 ã¨ããã
ã»è²·ãç©ã®åæ°ã¯å ¨é¨ã§ N+1 åã¨ããã
ã»ãã¤ã³ãéå ç㯠P < 1 ã¨ããã(ãã¨ãã°10%ãªã P=0.1)
* ãã¿ã¼ã³ï¼ï¼ã¾ã¨ãå
ããNåã®è²·ãç©ã®å ¨ã¦ã§ãã¤ã³ããæºããæå¾ã«ã¾ã¨ãã¦ä½¿ã
* ãã¿ã¼ã³ï¼ï¼æ¯å使ç¨å
ããNåã®è²·ãç©ã§ãæ¯åãã¤ã³ãã使ç¨ããã
* ãã¿ã¼ã³ï¼ï¼ã¾ã¨ãåï¼
ã»ãã¤ã³ãã§å²ãå¼ãããéé¡
ãNåã®è²·ãç©ã§Pãã¤æºã¾ãã®ã ããã(å²å¼éé¡) = NPã
ã(ãã ã NP < 1ãã¤ã¾ãæºãããã¤ã³ããååéé¡ãè¶
ãããã¨ã¯ãªããã®ã¨ãã¾ã.)
ã»æ®ã£ããã¤ã³ã
ãä»æ¯æã£ãéé¡ã«å¯¾ãã¦ããæ°ãã«ãã¤ã³ããä»ããã®ã¨ãã¾ãã
ãä¾ãã° 10%å²å¼ã§ 1000åã®è²·ãç©ããããã100ååããã¤ã³ãã§æ¯æã£ã¦ã
ãæ®ã 900åã«å¯¾ã㦠10% ã®ãã¤ã³ããä»ãã¨ããã«ã¼ã«ã§ãã
ããªã®ã§ãæ®ããã¤ã³ã㯠900å * 10% = 90ååãã¨ãªãã¾ãã
ã(æ®ããã¤ã³ã) = P * (1 - NP)
* ãã¿ã¼ã³ï¼ï¼æ¯å使ç¨åï¼
æ¯åã®ä½¿ç¨ãã¤ã³ãã P[N] ã¨è¡¨è¨ãã¦ãã©ã®ãããªæ°åã«ãªããèãã¦ã¿ã¾ãããã
P[0] = P
P[1] = P (1 - P )
P[2] = P (1 - P ( 1 - P ) )
P[3] = P (1 - P (1 - P ( 1 - P ) )
...
P[i+1] = P ( 1 - P[i] )
P[1] =
ããP ( 1 - P )
= P - P^2
P[2] =
ããP ( 1 - P ( 1 - P ) )
= P ( 1 - P + P^2 )
= P - P^2 + P^3
P[3] =
ããP ( 1 - P[2] )
= P ( 1 - ( P - P^2 + P^3 )
= P ( 1 - P + P^2 - P^3 )
= P - P^2 + P^3 - P^4
P[4] =
ããP ( 1 - P[3] )
= P ( 1 - (P - P^2 + P^3 - P^4) )
= P - P^2 + P^3 - P^4 + P^5
ä¸è¬çãªå¼ P[N] ã¯ã次ã®ããã«ãªãã¾ãã
P[N] = Σ[ i=1 ã N+1 ]ããããã»ã»ã»(â)
ããããPãå¥æ° + P[i]
ããããPãå¶æ° - P[i]
å¶æ°ãå¥æ°ãã§äº¤äºã«ãã©ã¹ãã¤ãã¹ã表ãããã¨ãããã¨ã¯ã
使ç¨ãã¤ã³ãã¯ãå®ã¯æ¯åããªããåæããæ°åã ã£ãã®ã§ãã
ãªãæ¯åããã®ããä»®ã«ãã¤ã³ãã100%ä»ã(P=1.0)ã¨ããç¶æ³ãèãã¦ã¿ãã¨ãçç±ããããã¾ãã
ï¼åç®ã¯ãéãåºãã¦è²·ããï¼åç®ã¯ãã¤ã³ãã ãã§è²·ããã¨ãã§ããã
ï¼åç®ã¯ã¾ããéãåºãã¦è²·ããï¼åç®ã¯ãã¤ã³ãã ãã§è²·ããã¨ãã§ããã»ã»ã»
ã¨ãªãã§ãããã
å
·ä½çã«ãP=0.1ï¼ã¤ã¾ã10%ï¼ã¨ãã¦ãã¾ã¨ãåã¨æ¯å使ç¨åãæ¯è¼ãã¦ã¿ã¾ãã
ä¸ã®è¡¨ã§ããã³ã¯ã®æ¹ãæ¯å使ç¨åãç·ã®æ¹ãã¾ã¨ãåã§ãã
æ¯æåè¨ã¯ãè²·ãç©ã§æ¯æã£ãç¾éã®åè¨å¤ã
æ®ãã¤ã³ãéé¡æç®ã¯ãæå
ã«æ®ã£ã¦ãããã¤ã³ãã§ãã
é»è²ãã¨ããã«ãï¼ã¤ã®ãã¿ã¼ã³ã®å·®é¡ãåºãã¦ãã¾ãã
ã¾ããæ¯æã£ãç¾éã®æ¯è¼ããã¨ãã¾ã¨ãåã®æ¹ãå°ãªããªã£ã¦ãã¾ãã
ããããæ®ãã¤ã³ããæ¯è¼ããã¨ãå対ã«æ¯å使ç¨åã®æ¹ãå¤ãæ®ãã¾ãã
ããã¯ä¸è¦å¥ç°ã«æããããããããã¾ãããã
ã¾ã¨ãåã§ã¯æå¾ã®ï¼åã®è²·ãç©ã«ããã¾ã¾ã§è²¯ããå
¨ã¦ã®ãã¤ã³ãã使ã£ã¦ããã®ã§ã
æå¾ã®ï¼åã®è²·ãç©ã§è¿ã£ã¦ãããã¤ã³ããå°ãªãã®ã§ãã
ï¼æå¾ã®ï¼åã®è²·ãç©ã«ä½¿ãç¾éãå°ãªãã®ã§ãããã«å¯¾ãã¦éå
ããããã¤ã³ããå°ãªãï¼
ããã¦ãæ¯æã£ãç¾éã¨ãæ®ãã¤ã³ãéé¡æç®ãåããã¦æ¯è¼ããã¨ã
ãã¼ã¿ã«ã§ã¯ã»ãã®å°ãã ããæ¯å使ç¨åã®æ¹ãå¾ããã¦ãã¾ãã
ã©ã¡ããå¾ãã¨ããåé¡ã®çã¯ããªãå¾®å¦ã§ãä½ããã£ã¦å¾ã¨ãããã«ãã£ã¦å¤ãã£ã¦ããã®ã§ãã
* æ¯åºããç¾éã ãã§æ¯è¼ããå ´å -- ã¾ã¨ãåã®æ¹ãå¾
* ç¾éï¼æ®ããã¤ã³ãã¾ã§å«ãã¦èããã° -- æ¯åå©ç¨åã®æ¹ãå¾
è²·ãç©ã®çµããã決ã¾ã£ã¦ããå ´åã
ããæç¹ã§å
¨ã¦ã®ãã¤ã³ãã使ãåãããã以éã¯è²·ãç©ãããªãã®ã ãã¨ããã®ã§ããã°ã
ã¾ã¨ãåã§ãã¤ã³ããããè¾¼ãã§ãã£ã¦ãæå¾ã®ï¼åã«ä½¿ãåã£ãæ¹ããå¾ã§ãã
ããã§ã¯ãªãã¦ãå°æ¥ã«æ¸¡ã£ã¦ãã£ã¨ç¶ç¶çã«è²·ãç©ãç¶ããå ´åã
æ¯åãã¤ã³ãã使ç¨ãã¦ãã£ãæ¹ãã次åã«ããã¤ã³ããæ®ãã®ã§ãå¾ã ã¨ãããã¨ã«ãªãã¾ãã
ãåºã®å´ããããã°ãã客ããã«ã¯ãã£ã¨ç¶ç¶çã«æ¥ã¦ã»ããã®ã§ã
ã§ããã ããã¤ã³ãã¯ãã®å ´ã§ä½¿ãããã«å§ããã¹ãã§ãããã
ããã¯ãç´æçã«ããã¤ã³ãã貯ããæ¹ã次åãæ¥ã¦ãããã ãããã¨æãã®ã¨å対ã®çµæã§ãã
â» ãªãããããªããã¨ããã¨ã使ã£ãç¾éã«å¯¾ãã¦å¿
ããã¤ã³ããæ®ãããã§ãã
â» ï¼ããã§ã¯ããããã«ã¼ã«ã§èãã¦ãã¾ãï¼
⻠確ãã«ãã¤ã³ãã貯ãã¦ãããã¡ã¯ãã客ããã¯æ¥ã¦ããã¾ããã
⻠貯ãè¾¼ãã ãã¤ã³ããä¸æ°ã«ä½¿ãåã£ãã¨ããç¸ã®åãç®ã¨ãªãã®ã§ãã
ãããã両è
ã®å·®ã¯éé¡ã®éãã«ç´ãã¨å¾®ã
ãããã®ã§ãã
ããï¼åã®è²·ãç©éé¡ã1000åã ã£ãã¨ããã¨ã
å²å¼ç10%ã10åã®è²·ãç©ã®å¾ã®å·®é¡ã¯ãããï¼åã«ãããªãã¾ããã
ãã®ç¨åº¦ã®éé¡ã§ããã°ããããããã¤ã³ãã貯ãã¦ãããã©æéãåãã¦ãã¾ã£ããã¨ãã
ããã¤ã³ãã«ã¼ããç¡ããããå¿ããããéå
çãå¤åãããã¨ãã£ãå½±é¿ã®æ¹ããã£ã¨å¤§ããã§ãããã
ãã¦ãæ¯å使ç¨åã®ä½¿ç¨ãã¤ã³ã(â)ãã©ã®ãããªæåã示ãã®ããã°ã©ãã«ããã¨ãããªãã¾ããã
確ãã«ãæåã®ï¼åãããã¯å¤ãæ¯åãã¦ãã¾ãã
ãã®å¾ã¯ä¸å®å¤ã«åæããããã§ãã
ãã£ãããªã®ã§ãä¸ã¨åããã¨ãããã¤ã³ãéå
ç 20%ã§è¡¨ã«ãã¦ã¿ã¾ããã
ãã¡ãã®ã°ã©ãã®æ¹ããæ¯åããæ§åãããåºã¦ãã¾ãã
ï¼åã®è²·ãç©éé¡ã1000åã¨ãã¦ã5åã®è²·ãç©ã®å¾ã®å·®é¡ã¯ 27åç¨åº¦ã
ãã®å·®é¡ããèããã¨ãçµå±ã®ã¨ãã使ããã貯ãããã¯ã
ãã®å ´ã®ãã£ã¼ãªã³ã°ã«ä»»ãã¦ãè¯ãã®ã§ã¯ãªãã§ããããã