åºæãã¯ãã«ãç´äº¤ããã®ã¯
ç·å½¢å¤æã«ããã¦ãåºæãã¯ãã«ãç´äº¤ããã®ã¯ããã®ç·å½¢å¤æã表ãè¡åã対称è¡åï¼è¤ç´ æ°ãªãã¨ã«ãã¼ãè¡åï¼ã¨ãªã£ã¦ããã¨ãã§ããã
ããã¯ç·å½¢ä»£æ°ã®èã ã¨æãã®ã§ããããªããããªãã®ããç´æçãªã¤ã¡ã¼ã¸ãæãæãã®ã¯ç°¡åã§ã¯ããã¾ããã
ããã§ãï¼ï½ï¼ã®å®å¯¾ç§°è¡åã«éå®ãã¦ãåºæãã¯ãã«ãç´äº¤ããã¤ã¡ã¼ã¸ãæãã¦ã¿ã¾ããã
ã¾ãã¯ç·å½¢ä»£æ°ã®å¾©ç¿ããã
å¹³é¢ä¸ã«æããå³å½¢ã®ãæ¡å¤§ã縮å°ãå転ãå転ãå¹³è¡å辺形ã¸ã®å¤å½¢ã¯ãï¼ï½ï¼ã®è¡åã§è¡¨ããã¨ãã§ãã¾ããï¼ãã ããå³å½¢ã®å¹³è¡ç§»åã¯æ±ããªããã¨ã«ãã¾ãï¼
å¹³é¢å³å½¢ã®å¤å½¢ã¨ã¯ãè¦ããã«æ¹ç¼ç´ä¸ã®ï¼åã®æ£æ¹å½¢ããã©ã®ãããªå½¢ã«ãã£ã¦ããããã¨ãããã¨ã§ãã
ãã®å³ã¯ãæ£æ¹å½¢ã®æ¨ªã表ããã¯ãã«(1,0)ã(a,c)ã«ã縦ã表ããã¯ãã«(0,1)ã(b,d)ã«å¤å½¢ããæ§åã§ãã
ãã®ããã« a, b, c, d ï¼ã¤ã®æ°åã§ãã£ã¦ãæ£æ¹å½¢ãã©ã®ããã«å½¢ãå¤ãããã表ããã¨ãã§ããããã§ãã
ãããè¡åã«ããç·å½¢å¤æã®ã¤ã¡ã¼ã¸ã§ãã
ãã®ãããªå³å½¢ã®å¤å½¢ãè¡ã£ãã¨ãããå¤å½¢ã«ãã£ã¦åããªãç´ç·ããã§ãããã¨ãããã¾ãã
ãã¨ãã°ä¸ä¸å·¦å³ã®å転ã§ã¯ãåç´ãªç·ã¨æ°´å¹³ãªç·ã¯åãã¾ããã
ï¼ç·ã®ä¸ã®ç¹ãåããªããã¨ããæå³ã§ã¯ããã¾ããã
ãç´ç·ãå¤å½¢ããçµæãããã¨ã®ç´ç·ã®ä¸ã«éãªãã¨ããæå³ã§ããï¼
ãã®ãåããªãç´ç·ãã®åãã表ããã¯ãã«ãåºæãã¯ãã«ã§ãã
å¤å½¢å¾ã®ç´ç·ãããã¨ã®ç´ç·ãä½åå¼ã延ã°ãããã®ã«ãªã£ã¦ãããããã®åçãåºæå¤ã§ãã
ï¼ï½ï¼è¡åã®å ´åãåºæãã¯ãã«ã¯ä¸è¬ã«ã¯ï¼æ¬åºã¦ãã¾ãã
å転ã¨ãã£ãå¤å½¢ã§ã¯ãåããªãç´ç·ã¯ã©ãã«ãã§ãã¾ãããã
ãã®ã¨ãã¯åºæãã¯ãã«ãè¤ç´ æ°ã«ãªã£ã¦ããã®ã ã¨èãããã¾ãã
ï¼å®è³ªçã«äºæ¬¡æ¹ç¨å¼ã®çã¨åããã¨ã§ããï¼
ãã¦ãããã§ï¼æ¬ã®åããªãç´ç·ãäºãã«ç´äº¤ãã¦ããã¨ãå®éã«ã¨ã¦ãå¿ç¨ä¾¡å¤ãé«ããªããã§ãã
ç´è§ã§ããã°ããã®ï¼æ¬ã®ç´ç·ãæ°ããªåº§æ¨è»¸ã¨ãã¦ä½¿ããã¨ãã§ãã¾ãã
ããã¦ããã®åº§æ¨è»¸ããçºããã¨ãå¤å½¢ã®æ§åãç´ ç´ãªå½¢ã§ãåãããããè¦ãã¦ãããã§ãã
ã§ãä»æ¥ã®æ¬é¡ãã©ããã£ãã¨ãã«ãåºæãã¯ãã«ã¯ç´äº¤ããã®ãï¼
çã¯ããç¥ããã¦ãã¦ããå¤æè¡åã対称è¡åã ã£ãã¨ããã§ãã
対称è¡åã¨ã¯ãè¡åã®å·¦ä¸ããå³ä¸ã«å¼ãã対è§ç·ãä¸å¿ã«ãä¸ä¸è§ã¨ä¸ä¸è§ãé¡ã«æ ããããã«æ£å対ã«ãªã£ã¦ããè¡åã®ãã¨ã
ï¼ï½ï¼è¡åã®å ´åã«ã¯ãå³ä¸(b)ã¨ãå·¦ä¸(c)ã®å¤ãåãè¡åã®ãã¨ã§ãã
ããã§ã¯ããªã対称è¡åã§ã¯ãåºæãã¯ãã«ãç´äº¤ããã®ã§ããããï¼
ç°¡åãªä¾ã¨ãã¦ã
ãã1, 2
ãã2, 1
ã¨ããè¡åãèãã¦ã¿ã¾ãããã
æ¹ç¼ç´ã®å¤å½¢ãæãæãã°ããã®å¤æã§åããªãç´ç·ã¯ãæã45度ã«ï¼æ¬åºã¦ãããã¨ãåããã¾ãã
ã¡ããã©ãã³ã¿ã°ã©ããæããããã¿ãããªæãã
確ãã«ããã®ä¾ã ã¨å¯¾ç§°è¡åã«ãã£ã¦ãåºæãã¯ãã«ãç´äº¤ãã¦ãããã¨ããããã¾ãã
ããã§ã¯ã次ã®ä¾ã¯ã©ãã§ããããã
ãã1, 2
ãã2, -2
åºæãã¯ãã«ãç´äº¤ãã¦ãããã©ãããå³ããèªã¿åãã¾ããï¼
ä¸æãå
·åã«æãã«ã²ããããã¨ããããã¾ãã¾åºæãã¯ãã«ãç´äº¤ãã¦ãããã¨ãã£ãæãã§ãããã
ãã®å³ã ãããç´äº¤ã®æ§åãè¦æãã®ã¯ããã¯ãç°¡åã§ã¯ãªãã®ã§ãã
ããã§è¦ç¹ãå¤ãã¦ãéã«ç´äº¤ããåºæãã¯ãã«ãï¼æ¬ãã£ãã¨ããå¤æè¡åã¯ã©ããªãããèãã¦ã¿ã¾ããã
äºãã«ç´äº¤ããåºæãã¯ãã«ï¼æ¬ã«ããå¤å½¢ã¨ã¯ãã¤ã¾ãã
å¹³é¢å
¨ä½ãããããã®åºæãã¯ãã«ã®æ¹åã«æ¡å¤§ç¸®å°ãããã¨ã§ãã
ãããããæãã®æ¡å¤§ç¸®å°ããè¡ã£ãã¨ããæ¹ç¼ç´ã®æ£æ¹å½¢ãã©ã®ããã«å¤å½¢ãããã®ãã調ã¹ã¦ã¿ã¾ãã
ï¼åç®ã®åºæãã¯ãã«ããX軸ã«å¯¾ãã¦è§åº¦Î¸ã®åãã«ãã£ãã¨ãã¾ãã
ãã®åºæå¤ã¯Î»1ã ã£ãã¨ãã¾ãããã
ï¼åç®ã®åºæãã¯ãã«ã¯ï¼åç®ã«å¯¾ãã¦ç´è§ã§ããã®åºæå¤ã¯Î»2ã§ããã¨ãã¾ãã
ã¾ãã¯ï¼¸è»¸ä¸ã®(1,0)ãã¯ãã«ã®å¤æå
ã«ã¤ãã¦ã
ãã®å³ããã(1,0)ãã¯ãã«ã®å¤æå
ã¯ã(λ1 Cosθ, λ2 Sinθ) ãæè¨åãã«Î¸ã ãå転ãããã¨ããã ã¨åããã¾ãã
è¨ç®ããã¨ããã㯠(λ1 (Cosθ)^2 + λ2 (Sinθ)^2 , (λ2 - λ1) Sinθ Cosθ) ã«ãªãã¾ãã
ï¼æè¨åãã®Î¸å転ã¯
ããCosθ, Sinθ
ãã-Sinθ, Cosθ
ãããæãç®ããã ããï¼
åãããã«ãã¦ãY軸ä¸ã®(0,1)ãã¯ãã«ãã©ãã«è¡ããã調ã¹ã¦ã¿ãã¨ã
ã( (λ2 - λ1) Sinθ Cosθ, λ1 (Sinθ)^2 + λ2 (Cosθ)^2 )
ã¨ãªãã¾ãã
以ä¸ã®ã(1,0)ãã¯ãã«ã®å¤æå
ã(0,1)ãã¯ãã«ã®å¤æå
ã並ã¹ã¦æ¸ãããã®ãå¤æè¡åãªã®ã§ãããã
çµæã¯ãããããã¨ã
ããλ1 (Cosθ)^2 + λ2 (Sinθ)^2 , ã(λ2 - λ1) Sinθ Cosθ
ãã(λ2 - λ1) Sinθ Cosθ, ãããλ1 (Sinθ)^2 + λ2 (Cosθ)^2
å¼ã¯é·ã£ãããããã©ã確ãã«å¯¾ç§°è¡åã«ãªã£ã¦ã¾ããã
éã«ã対称è¡åã§ããã°ãå¿
ãåºæãã¯ãã«ãç´äº¤ããã®ãï¼ï¼ååæ¡ä»¶ï¼
ï¼ï½ï¼ã®å¯¾ç§°è¡åã«ã¯ãï¼åã®æ°åãããã¾ãã
ï¼å
¨é¨ã§ï¼åã®æ°åã®ãã¡ãå³ä¸ã¨å·¦ä¸ãåãã ãããï¼åãï¼
ä¸ã®å¼ã«ã¯æªç¥æ°ã λ1, λ2, θ ã®ï¼åã§ããããã¡ããã©ï¼åã®æ°åã«ãã£ã¦ãï¼ã¤ã®æªç¥æ°ãå®ã¾ãã¾ãã
ãªã®ã§ãï¼ã¤ã®æªç¥æ°ã解ããå ´åã«ã¯ã対称è¡åã®åºæãã¯ãã«ãç´äº¤ãããã¨ãè¨ããããã§ãã
ï¼ Î»2 = λ1 ã®ã¨ãã¯ãï¼ã¤ã®æªç¥æ°ã解ããã¨ãã§ããªãã®ã§ãç´äº¤ããåºæãã¯ãã«ãåºã¦ãã¾ãããï¼
â» 3/9 追è¨
対称è¡åã«ããå¤æã®ã¤ã¡ã¼ã¸ãçµµã«ãã¦ã¿ã¾ããã
å¹³é¢å
¨ä½ããåºæãã¯ãã«(1)ã®æ¹åã«Î»1ã ãå¼ã延ã°ãã
ããã¨ç´äº¤ããåºæãã¯ãã«(2)ã®æ¹åã«Î»2ã ãå¼ã延ã°ããã¨ãããã¨ã¯ããã
ãããªæãã«ãªãã§ãããã
å³ä¸ã®æ²ç·ã¯ããã©ã¡ã¼ã¿ã¼ t ãç¨ãã¦
ããx = λ1 ^ t
ããy = λ2 ^ t
ã§è¡¨ããããããªæ²ç·ã§ãã
å¤æè¡åã対称ã«ãªã£ã¦ããã¨ãããã¨ã¯ãå³ä¸ã§â
å°ãã¤ããç®æã®é·ããçãããªããã¨ãããã¨ã§ãã
ï¼â
å°ã¯ããã¯ãã«(1,0)ã®å¤æå
ã®ï¼¹æåã¨ããã¯ãã«(0,1)ã®å¤æå
ã®ï¼¸æåã§ããï¼
ä¸ã®çµµã¯ãλ1ãλ2å
±ã«æ¡å¤§ãã¦ããå ´åã ã£ãã®ã§ããã
ããλ2ã縮å°ãã¦ããå ´åã¯ãããªé¢¨ã«ãªãã¾ãã
ãã®å ´åã«ããâ
å°ãä»ããç®æã®é·ããçãããªã£ã¦ãã¾ãã
â»é¨åçã«å¯¾ç§°ãªè¡åã(2010/06/04追è¨, 07/07ä¿®æ£)