Aller au contenu

Théorèmes d'isomorphisme

Un article de Wikipédia, l'encyclopédie libre.

En mathématiques, les trois théorèmes d'isomorphisme fournissent l'existence d'isomorphismes dans le cadre de la théorie des groupes.

Ces trois théorèmes d'isomorphisme sont généralisables à d'autres structures que les groupes. Voir notamment « Anneau quotient », « Algèbre universelle » et « Groupe à opérateurs ».

Premier théorème d'isomorphisme

[modifier | modifier le code]

Le premier théorème d'isomorphisme affirme qu'étant donné un morphisme de groupes , on peut rendre injectif en quotientant par son noyau Ker f, qui est un sous-groupe normal de G.

Premier théorème d'isomorphisme[1] —  Soit un morphisme de groupes. Alors induit un isomorphisme .

Une autre formulation possible du théorème précédent est que le morphisme se factorise par la surjection et l'injection canoniques, c'est-à-dire que le diagramme qui suit est commutatif.

Diagramme commutatif de la factorisation canonique d'un homomorphisme
Factorisation d'un morphisme.

Deuxième théorème d'isomorphisme

[modifier | modifier le code]

Deuxième théorème d'isomorphisme[2] —  Soient un groupe, un sous-groupe normal de et un sous-groupe de . Alors est un sous-groupe normal de , et on a l'isomorphisme suivant :

La conclusion de ce théorème reste vraie si l'on suppose seulement que le normalisateur de contient (au lieu de le supposer égal à tout entier).

Troisième théorème d'isomorphisme

[modifier | modifier le code]

Troisième théorème d'isomorphisme[3] — Soient un groupe et et deux sous-groupes normaux de tels que soit inclus dans . Alors est un sous-groupe normal de et on a l'isomorphisme suivant :

Notes et références

[modifier | modifier le code]
  1. Pour une démonstration, voir par exemple « Premier théorème d'isomorphisme » sur Wikiversité.
  2. Pour une démonstration, voir par exemple « Second théorème d'isomorphisme » sur Wikiversité.
  3. Pour une démonstration, voir par exemple « Troisième théorème d'isomorphisme » sur Wikiversité.

Serge Lang, Algèbre [détail des éditions] chapitre I, § 4

Articles connexes

[modifier | modifier le code]