Apache Impala is the open source, native analytic database for open data and table formats. Follow us on Twitter at @ApacheImpala! Do BI-style Queries Impala provides low latency and high concurrency for BI/analytic queries on the Hadoop ecosystem, including Iceberg, open data formats, and most cloud storage options. Impala also scales linearly, even in multitenant environments. Unify Your Infrast
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking âAccept Allâ, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent. This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categor
Please note that all new project news and releases have moved to https://cascading.wensel.net The Cascading Ecosystem is a collection of applications, languages, and APIs for developing data-intensive applications. At the ecosystem core is Cascading, a Java API for defining complex data flows and integrating those flows with back-end systems, and a query planner for mapping and executing logical f
Jubatus English Japanese
8æã«å ¥ç¤¾ããä½ã æ¨ã§ããããã«ã¡ãï¼ å ¥ç¤¾ãã¦ããã¯Hadoopã使ããã¨ãå¤ããæ¥ã ã大è¦æ¨¡ãã¼ã¿ã¨æ ¼éãã¦ãã¾ãã大å¤ã§ã¯ããã¾ãããå人ã§ã¯ãªããªã触ããã¨ãåºæ¥ãªããããªå¤§è¦æ¨¡ãã¼ã¿ã触ããã®ã¯æ¥½ããã§ãã ãã¦ãHadoopã¯æè¿è²ã ãªã¨ããã§ä½¿ããå§ãã¦ãã¦ããã¨æããã§ãããå®éã«å©ç¨ãã¦ã¿ã¦å°ã£ãäºãtipsãªã©ãå®è·µçãªæ å ±ã¯ã¾ã ãã¾ãå ¬éããã¦ãã¾ããããã®è¾ºã®æ å ±ãã¿ããªæ±ãã¦ããã¯ãâ¦ï¼ï¼ ããã§ãåãå®éã«è§¦ã£ã¦ã¿ã¦å°ã£ãäºãHadoopã使ãä¸ã§ãã¤ã³ãã ã¨æã£ããã¨ãªã©ã社å åå¼·ä¼ã§çºè¡¨ããã®ã§å ¬éãã¦ã¿ã¾ããHadoopã使ã£ã¦ããï¼ä½¿ãããã¨æã£ã¦ããï¼æ¹ã®åèã«ãªãã°å¹¸ãã§ãã [slideshare id=2711363&doc=20091214techblog-091213183529-phpapp02] Hadoopã®å©ç¨ã¯ã¾ã ã¾ã 試è¡é¯èª¤ã®é£ç¶
HadoopDB An Architectural Hybrid of MapReduce and DBMS Technologies for Analytical Workloads. HadoopDB is: A hybrid of DBMS and MapReduce technologies that targets analytical workloads Designed to run on a shared-nothing cluster of commodity machines, or in the cloud An attempt to fill the gap in the market for a free and open source parallel DBMS Much more scalable than currently available parall
A Comparison of Approaches to Large-Scale Data Analysis: MapReduce vs. DBMS Benchmarks Overview 04/14/2009 - SIGMOD 2009 Paper The following information is meant to provide documentation on how others can recreate the benchmark trials used in our SIGMOD 2009 paper. Our experiments were conducted on a 100-node cluster at the University of Wisconsin-Madison; each node had a single 2.40 GHz Intel Cor
GREEããã§ä¸å®æã§ãã£ã¦ããGREE Labsãªã¼ãã³ã½ã¼ã¹ãã¯ããã¸ã¼åå¼·ä¼ã§ãHadoopã®è©±ãèãã¦ãã¾ãããHadoopã¯ãã¤ã¾ãã¯Googleã®GFSãMapReduceã®ã¯ãã¼ã³ã ããã§ããGoogleãæ¯ããæè¡ãã«ããã¡ãã人ãªãå¿ è¦ã§ããã çºè¡¨ã¯ãæè¡é¢ãç°¡æ½ã«æ¼ãããããã§ããããããããã®ããå®éã®å©ç¨äºä¾ã®è©±ãèããã®ãé¢ç½ãã£ãã¨æãã¾ããæè¿ã®Webç³»ã§ã¯ããµã¼ãã¹é¢ã§ãããã¿ã¤ãºé¢ã§ãããã¼ã¿ãã¤ãã³ã°ã¨ãè¡åã¿ã¼ã²ãã£ã³ã°ã¨ããã¢ãããã ãªãã¨æãã¾ããã ãã¬ã¼ã³è³æãusté²ç»ãå ¬éããã¦ãã¾ããã以ä¸ãèªåã®ã¡ã¢ã¨ããæå³ã§è¨é²ãã¦ããã¾ãã Hadoopã«ã¤ãã¦ï¼å¤ªç°ä¸æ¨¹ï¼ Preferred Infrastructureã®CTOã§ãSedueã®ä½è ã大éã®ãã¼ã¿ã®å¦çããã¼ãã§ãååã¯é ã§ã§ãã¦ããwããããªãããªã§ãã¯ã¦ãæ¤ç´¢ã§ã使ããã¦ã
ãªã¼ãã³ã½ã¼ã¹åæ£ã·ã¹ãã ãHadoopãã«é¢ãã解æè³æãå ¬éããã¦é ãã¦ããã¾ãããã®èª¿æ»ã¯NTTã¬ã¾ãã³ãæ ªå¼ä¼ç¤¾æ§ã¨å ±åã§è¡ãã¾ãã(ãã¬ã¹ãªãªã¼ã¹)ã Hadoop解æè³æ(PDF), æçµæ´æ°: 2008/08/25, å ¬é: 2008/08/25 Hadoopã®å®éã®ã¤ã³ã¹ãã¼ã«æ¹æ³ãªã©ã«ã¤ãã¾ãã¦ã¯ãå¼ç¤¾å¤ªç°ã«ãã以ä¸ã®è¨äºããåèä¸ããã HadoopãhBaseã§æ§ç¯ãã大è¦æ¨¡åæ£ãã¼ã¿å¦çã·ã¹ãã Hadoopã®ã¤ã³ã¹ãã¼ã«ã¨ãµã³ãã«ããã°ã©ã ã®å®è¡ è¤æ°ãã·ã³ã¸Hadoopãã¤ã³ã¹ãã¼ã«ãã
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}